30,988 research outputs found

    A new model for the double well potential

    Full text link
    A new model for the double well potential is presented in the paper. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model have many merits and may be used in the double well problem.Comment: 3pages, 3figure

    Universal Quantum Degeneracy Point for Superconducting Qubits

    Full text link
    The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qubits can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure

    The SUMER Lyman-alpha line profile in quiescent prominences

    Full text link
    Aims: Out of a novel observing technique, we publish for the first time, SoHO-SUMER observations of the true spectral line profile of hydrogen Lyman-alpha in quiescent prominences. With SoHO not being in Earth orbit, our high-quality data set is free from geocoronal absorption. We study the line profile and compare it with earlier observations of the higher Lyman lines and recent model predictions. Methods: We applied the reduced-aperture observing mode to two prominence targets and started a statistical analysis of the line profiles in both data sets. In particular, we investigated the shape of the profile, the radiance distribution and the line shape-to-radiance interrelation. We also compare Ly-a data to co-temporal 1206 Si III data. Results: We find that the average profile of Ly-a has a blue-peak dominance and is more reversed, if the line-of-sight is perpendicular to the field lines. The contrast of Ly-a prominence emission rasters is very low and the radiance distribution differs from the log-normal distribution of the disk. Features seen in the Si III line are not always co-spatial with Ly-a emission. Conclusions: Our empirical results support recent multi-thread models, which predict that asymmetries and depths of the self-reversal depend on the orientation of the prominence axis relative to the line-of-sight.Comment: 4 pages, 7 figures; accepted for publication as A&A lette

    Feedback local optimality principle applied to rocket vertical landing VTVL

    Get PDF
    Vertical landing is becoming popular in the last fifteen years, a technology known under the acronym VTVL, Vertical Takeoff and Vertical Landing [1,2]. The interest in such landing technology is dictated by possible cost reductions [3,4], that impose spaceship’s recycling. The rockets are not generally de- signed to perform landing operations, rather their design is aimed at takeoff operations, guaranteeing a very high forward acceleration to gain the velocity needed to escape the gravitational force. In this paper a new control method based on Feedback Local Optimality Principle, named FLOP is applied to the rocket landing problem. The FLOP belongs to a special class of optimal controllers, developed by the mechatronic and vehicle dynamics lab of Sapienza, named Variational Feedback Controllers - VFC, that are part of an ongoing research and are recently applied in different field: nonlinear system [5], marine and terrestrial autonomous vehicles [6,7,8], multi agents interactions and vibration control [9, 10]. The paper is devoted to show the robustness of the nonlinear controlled system, comparing the performances with the LQR, one of the most acknowledged methods in optimal control

    Observations of Subarcsecond Bright Dots in the Transition Region above Sunspots with the Interface Region Imaging Spectrograph

    Full text link
    Observations with the Interface Region Imaging Spectrograph (IRIS) have revealed numerous sub-arcsecond bright dots in the transition region above sunspots. These bright dots are seen in the 1400\AA{} and 1330\AA{} slit-jaw images. They are clearly present in all sunspots we investigated, mostly in the penumbrae, but also occasionally in some umbrae and light bridges. The bright dots in the penumbrae typically appear slightly elongated, with the two dimensions being 300--600 km and 250--450 km, respectively. The long sides of these dots are often nearly parallel to the bright filamentary structures in the penumbrae but sometimes clearly deviate from the radial direction. Their lifetimes are mostly less than one minute, although some dots last for a few minutes or even longer. Their intensities are often a few times stronger than the intensities of the surrounding environment in the slit-jaw images. About half of the bright dots show apparent movement with speeds of ∼\sim10--40~km~s−1^{-1} in the radial direction. Spectra of a few bright dots were obtained and the Si~{\sc{iv}}~1402.77\AA{} line profiles in these dots are significantly broadened. The line intensity can be enhanced by one to two orders of magnitude. Some relatively bright and long-lasting dots are also observed in several passbands of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, and they appear to be located at the bases of loop-like structures. Many of these bright dots are likely associated with small-scale energy release events at the transition region footpoints of magnetic loops.Comment: 5 figures, will appear in ApJ

    Radiance and Doppler shift distributions across the network of the quiet Sun

    Full text link
    The radiance and Doppler-shift distributions across the solar network provide observational constraints of two-dimensional modeling of transition-region emission and flows in coronal funnels. Two different methods, dispersion plots and average-profile studies, were applied to investigate these distributions. In the dispersion plots, we divided the entire scanned region into a bright and a dark part according to an image of Fe xii; we plotted intensities and Doppler shifts in each bin as determined according to a filtered intensity of Si ii. We also studied the difference in height variations of the magnetic field as extrapolated from the MDI magnetogram, in and outside network. For the average-profile study, we selected 74 individual cases and derived the average profiles of intensities and Doppler shifts across the network. The dispersion plots reveal that the intensities of Si ii and C iv increase from network boundary to network center in both parts. However, the intensity of Ne viii shows different trends, namely increasing in the bright part and decreasing in the dark part. In both parts, the Doppler shift of C iv increases steadily from internetwork to network center. The average-profile study reveals that the intensities of the three lines all decline from the network center to internetwork region. The binned intensities of Si ii and Ne viii have a good correlation. We also find that the large blue shift of Ne viii does not coincide with large red shift of C iv. Our results suggest that the network structure is still prominent at the layer where Ne viii is formed in the quiet Sun, and that the magnetic structures expand more strongly in the dark part than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure

    Topology of Entanglement in Multipartite States with Translational Invariance

    Full text link
    The topology of entanglement in multipartite states with translational invariance is discussed in this article. Two global features are foundby which one can distinguish distinct states. These are the cyclic unit and the quantised geometric phase. Furthermore the topology is indicated by the fractional spin. Finally a scheme is presented for preparation of these types of states in spin chain systems, in which the degeneracy of the energy levels characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ
    • …
    corecore