4,253 research outputs found

    Overall Evolution of Realistic Gamma-ray Burst Remnant and Its Afterglow

    Get PDF
    Conventional dynamic model of gamma-ray burst remnants is found to be incorrect for adiabatic blastwaves during the non-relativistic phase. A new model is derived, which is shown to be correct for both radiative and adiabatic blastwaves during both ultra-relativistic and non-relativistic phase. Our model also takes the evolution of the radiative efficiency into account. The importance of the transition from the ultra-relativistic phase to the non-relativistic phase is stressed.Comment: 9 pages, aasms4 style, 3 ps figures, minor changes, will be published in Chin. Phys. Let

    Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable interest has been aroused in recent years by the well-known notion that biological systems are sensitive to visible light. With clinical applications of visible radiation in the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red light irradiation with extremely low energy transfer on a neural cell line derived from rat pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-Ă -vis two distinct biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell viability during oxidative stress.</p> <p>Methods</p> <p>We used a 670 nm laser, with extremely low peak power output (3 mW/cm<sup>2</sup>) and at an extremely low dose (0.45 mJ/cm<sup>2</sup>). Neurite elongation was measured over three days in culture. The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of H<sub>2</sub>O<sub>2</sub>, and by means of the MTT cell viability assay.</p> <p>Results</p> <p>We found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-collagen coated substrate and protects PC12 cells against oxidative stress.</p> <p>Conclusion</p> <p>These data suggest that red light radiation protects the viability of cell culture in case of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite outgrowth, and this effect could also have positive implications for axonal protection.</p

    The composite picture of the charge carriers in La2-xSrxCuO4 (0.063 < x < 0.11) superconductors

    Full text link
    Through far-infrared studies of La2-xSrxCuO4 single crystals for x = 0.063, 0.07, 0.09, and 0.11, we found that only ~ 0.2 % of the total holes participated in the nearly dissipationless normal state charge transport and superconductivity. We have also observed characteristic collective modes at w ~ 18 cm-1 and 22 cm-1 due to the bound carriers in an electronic lattice (EL) state and the free carriers are massively screened by the EL. Our findings lead us to propose a composite picture of the charge system where the free carriers are coupled to and riding on the EL. This unique composite system of charge carriers may provide further insights into the understanding of the cuprate physics.Comment: 10 pages, 4 figure

    The hierarchy of multiple many-body interaction scales in high-temperature superconductors

    Full text link
    To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher energy scale, we present improved experimental data from four families of high-Tc superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low energy anomaly ("kink") of 0.03-0.09eV, a high energy anomaly of 0.3-0.5eV, and an anomalous enhancement of the width of the LDA-based CuO2 band extending to energies of ~ 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented.Comment: 7 pages, 6 figure

    KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars

    Full text link
    In the late stages of nuclear burning for massive stars (M>8~M_{\sun}), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25~M_{\sun} at a distance less than 690~pc with 3σ\sigma significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.Comment: 19 pages, 6 figures, 1 tabl

    Pseudospin symmetry and its approximation in real nuclei

    Full text link
    The origin of pseudospin symmetry and its broken in real nuclei are discussed in the relativistic mean field theory. In the exact pseudospin symmetry, even the usual intruder orbits have degenerate partners. In real nuclei, pseudospin symmetry is approximate, and the partners of the usual intruder orbits will disappear. The difference is mainly due to the pseudo spin-orbit potential and the transition between them is discussed in details. The contribution of pseudospin-orbit potential for intruder orbits is quite large, compared with that for pseudospin doublets. The disappearance of the pseudospin partner for the intruder orbit can be understood from the properties of its wave function.Comment: 10 pages, 3 figure

    X-ray triple rings around the M87 jets in the central Virgo cluster

    Full text link
    The Chandra X-ray data of the central Virgo cluster are re-examined to reveal a triple-ring structure around the galaxy M87, reminiscent of the spectacular triple-ring pattern of the SN1987A in the Large Magellanic Cloud (LMC). In the sky plane, the two apparent smaller ellipses are roughly aligned along the M87 jets; the larger ring centers at the M87 nucleus and is likely a circle roughly perpendicular to the M87 jet. Certain similarities of these two triple-ring structures might hint at similar processes that operate in these two systems with entirely different sizes and mass scales. We suspect that a major merging event of two galaxies with nuclear supermassive black holes (SMBHs) might create such a triple-ring structure and drove acoustic and internal gravity waves far and near. The M87 jets are perhaps powered by a spinning SMBH resulting from this catastrophic merging event.Comment: accepted by ApJ

    Pseudogap in a thin film of a conventional superconductor

    Full text link
    A superconducting state is characterized by the gap in the electronic density of states which vanishes at the superconducting transition temperature Tc. It was discovered that in high temperature superconductors a noticeable depression in the density of states still remains even at temperatures above Tc; this feature being called pseudogap. Here we show that a pseudogap exists in a conventional superconductor: ultrathin titanium nitride films over a wide range of temperatures above Tc. Our study reveals that this pseudogap state is induced by superconducting fluctuations and favored by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state, and other contributions in the layered high temperature superconductor compounds.Comment: 26 pages, 4 figure

    Publishing perishing? Towards tomorrow's information architecture

    Get PDF
    Scientific articles are tailored to present information in human-readable aliquots. Although the Internet has revolutionized the way our society thinks about information, the traditional text-based framework of the scientific article remains largely unchanged. This format imposes sharp constraints upon the type and quantity of biological information published today. Academic journals alone cannot capture the findings of modern genome-scale inquiry. Like many other disciplines, molecular biology is a science of facts: information inherently suited to database storage. In the past decade, a proliferation of public and private databases has emerged to house genome sequence, protein structure information, functional genomics data and more; these digital repositories are now a vital component of scientific communication. The next challenge is to integrate this vast and ever-growing body of information with academic journals and other media. To truly integrate scientific information we must modernize academic publishing to exploit the power of the Internet. This means more than online access to articles, hyperlinked references and web-based supplemental data; it means making articles fully computer-readable with intelligent markup and Structured Digital Abstracts. Here, we examine the changing roles of scholarly journals and databases. We present our vision of the optimal information architecture for the biosciences, and close with tangible steps to improve our handling of scientific information today while paving the way for an expansive central index in the future
    • 

    corecore