8 research outputs found

    Polymorphisms of candidate genes associated with meat quality and disease resistance in indigenous and exotic pig breeds of Vietnam

    Get PDF
    The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included in the analysis of the polymorphisms of the heart fatty-acid-binding protein (H-FABP), alpha 1 fucosyltransferase (FUT1), and bactericidal/permeability-increasing protein (BPI) genes by the sequencing and PCR-RFLP methods. For H-FABP, 17 single nucleotide polymorphisms (SNPs) were detected in indigenous pig breeds by direct sequencing of a fragment at intron 2 of the H-FABP gene. The mutation T1556C created a new restriction site for the enzyme MspI, which gave rise to new allelic variants in three indigenous pig breeds. In indigenous breeds, the frequency of the favourable alleles a and d at MspI and HaeIII sites of the H-FABP gene were low. Meanwhile, the frequency of the d allele at the HaeIII site in exotic breeds was significantly higher than those of indigenous pig breeds. No mutation was found in the RFLP-fragment of the FUT1 gene of four indigenous pig breeds by sequencing, while in the BPI gene two mutations were detected in the Tap Na breed. The resistant alleles of the FUT1 and BPI genes in the exotic breeds were significantly higher than those of indigenous pig breeds. Among the indigenous pig breeds, the Tap Na breed possessed a higher frequency of the resistant allele G of BPI gene than the remaining breeds. The T1556C mutation at H-FABP may be important for the genetic improvement of intramuscular fat content and breed. Tap Na may be a source of resistant alleles for local ecologies.Keywords: H-FABP gene, FUT1 gene, BPI gene, IMF, PCR-RFL

    Clinical evaluation of AI-assisted muscle ultrasound for monitoring muscle wasting in ICU patients

    No full text
    Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998-0.999 vs. 0.982 95% CI 0.962-0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9-21.7) to 9.4 min (IQR 7.2-11.7) compared to when using the AI tool (p < 0.001). AI-assisted muscle ultrasound removes the need for manual tracing, increases reproducibility and saves time. This system may aid monitoring muscle size in ICU patients assisting rehabilitation programmes
    corecore