2,230 research outputs found

    Quantum Newtonian Dynamics on a Light Front

    Get PDF
    We recall the special features of quantum dynamics on a light-front (in an infinite momentum frame) in string and field theory. The reason this approach is more effective for string than for fields is stressed: the light-front dynamics for string is that of a true Newtonian many particle system, since a string bit has a fixed Newtonian mass. In contrast, each particle of a field theory has a variable Newtonian mass P^+, so the Newtonian analogy actually requires an infinite number of species of elementary Newtonian particles. This complication substantially weakens the value of the Newtonian analogy in applying light-front dynamics to nonperturbative problems. Motivated by the fact that conventional field theories can be obtained as infinite tension limits of string theories, we propose a way to recast field theory as a standard Newtonian system. We devise and analyze some simple quantum mechanical systems that display the essence of the proposal, and we discuss prospects for applying these ideas to large N_c QCD.Comment: 13 pages, 3 figures, LaTex, psfig, references added, APS copyrigh

    1+11+1-Dimensional Large NN QCD coupled to Adjoint Fermions

    Full text link
    We consider 1+1-dimensional QCD coupled to Majorana fermions in the adjoint representation of the gauge group SU(N)SU(N). Pair creation of partons (fermion quanta) is not suppressed in the large-NN limit, where the glueball-like bound states become free. In this limit the spectrum is given by a linear \lc\ Schr\" odinger equation, which we study numerically using the discretized \lcq. We find a discrete spectrum of bound states, with the logarithm of the level density growing approximately linearly with the mass. The wave function of a typical excited state is a complicated mixture of components with different parton numbers. A few low-lying states, however, are surprisingly close to being eigenstates of the parton number, and their masses can be accurately calculated by truncated diagonalizations.Comment: 22 pages + 9 figures (available by request from [email protected]), uses phyzzx.tex + tables.tex PUPT-1413, IASSNS-HEP-93/4

    String Bit Models for Superstring

    Get PDF
    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D−2)+1(D-2)+1 dimensional space-time. This means that Poincar\'e invariance is reduced to the Galilei subgroup in D−2D-2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in DD dimensional space-time enjoying the full N=2N=2 Poincar\'e supersymmetric dynamics of type II-B superstring.Comment: 43 pages, phyzzx require

    Transverse Lattice Approach to Light-Front Hamiltonian QCD

    Get PDF
    We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the potential between heavy sources and the structure of the glueballs from their light-front wavefunctions. Finally, we briefly discuss the extension of these calculations to 3+1-dimensions.Comment: 55 pages, uses macro boxedeps.tex, minor corrections in revised versio

    A Flexible and Modular Framework for Implementing Infrastructures for Global Computing

    Get PDF
    We present a Java software framework for building infrastructures to support the development of applications for systems where mobility and network awareness are key issues. The framework is particularly useful to develop run-time support for languages oriented towards global computing. It enables platform designers to customize communication protocols and network architectures and guarantees transparency of name management and code mobility in distributed environments. The key features are illustrated by means of a couple of simple case studies

    String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter

    Get PDF
    We propose gauging matrix models of string theory to eliminate unwanted non-singlet states. To this end we perform a discretised light-cone quantisation of large N gauge theory in 1+1 dimensions, with scalar or fermionic matter fields transforming in the adjoint representation of SU(N). The entire spectrum consists of bosonic and fermionic closed-string excitations, which are free as N tends to infinity. We analyze the general features of such bound states as a function of the cut-off and the gauge coupling, obtaining good convergence for the case of adjoint fermions. We discuss possible extensions of the model and the search for new non-critical string theories.Comment: 20 pages (7 figures available from authors as postscipt files), PUPT-134

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420

    Get PDF
    In this paper, historical optical(UBVRI) data and newly observed data from the Yunnan Observatory of China(about100 years) are presented for BL Lacertae. Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/- 0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the literature; The Jurkevich method is used to investigate the existence of periods in the B band light curve, and a long-term period of 14 years is found. The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In addition, a close relation between B-I and B is found, suggesting that the spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ, Vol. 507, 199

    A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit

    Full text link
    This is a review article in which we will introduce, in a unifying fashion and with more intermediate steps in some difficult calculations, two infinite-dimensional Lie algebras of quantum matrix models, one for the open string sector and one for the closed string sector. Physical observables of quantum matrix models in the large-N limit can be expressed as elements of these Lie algebras. We will see that both algebras arise as quotient algebras of a larger Lie algebra. We will also discuss some properties of these Lie algebras not published elsewhere yet, and briefly review their relationship with well-known algebras like the Cuntz algebra, the Witt algebra and the Virasoro algebra. We will also review how Yang--Mills theory, various low energy effective models of string theory, quantum gravity, string-bit models, and quantum spin chain models can be formulated as quantum matrix models. Studying these algebras thus help us understand the common symmetry of these physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review articl

    Fock space resolutions of the Virasoro highest weight modules with c<=1

    Full text link
    We extend Felder's construction of Fock space resolutions for the Virasoro minimal models to all irreducible modules with c≀1c\leq 1. In particular, we provide resolutions for the representations corresponding to the boundary and exterior of the Kac table.Comment: 14 pages, revised versio
    • 

    corecore