14 research outputs found
Simulations of the Static Friction Due to Adsorbed Molecules
The static friction between crystalline surfaces separated by a molecularly
thin layer of adsorbed molecules is calculated using molecular dynamics
simulations. These molecules naturally lead to a finite static friction that is
consistent with macroscopic friction laws. Crystalline alignment, sliding
direction, and the number of adsorbed molecules are not controlled in most
experiments and are shown to have little effect on the friction. Temperature,
molecular geometry and interaction potentials can have larger effects on
friction. The observed trends in friction can be understood in terms of a
simple hard sphere model.Comment: 13 pages, 13 figure
Shear yielding of amorphous glassy solids: Effect of temperature and strain rate
We study shear yielding and steady state flow of glassy materials with
molecular dynamics simulations of two standard models: amorphous polymers and
bidisperse Lennard-Jones glasses. For a fixed strain rate, the maximum shear
yield stress and the steady state flow stress in simple shear both drop
linearly with increasing temperature. The dependence on strain rate can be
described by a either a logarithm or a power-law added to a constant. In marked
contrast to predictions of traditional thermal activation models, the rate
dependence is nearly independent of temperature. The relation to more recent
models of plastic deformation and glassy rheology is discussed, and the
dynamics of particles and stress in small regions is examined in light of these
findings
Identification of the underlying factor structure of the derriford appearance scale 24
Background: The Derriford Appearance Scale24 (DAS24) is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale.
Methods: A large (n = 1,265) sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed theDAS24.
Results: A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker's Coefficient of Congruence (rc =.979) and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC), was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC). The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body.
Discussion: The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale
