2,465 research outputs found

    Ward Identities in Non-equilibrium QED

    Full text link
    We verify the QED Ward identity for the two- and three -point functions at non-equilibrium in the HTL limit. We use the Keldysh formalism of real time finite temperature field theory. We obtain an identity of the same form as the Ward identity for a set of one loop self-energy and one loop three-point vertex diagrams which are constructed from HTL effective propagators and vertices.Comment: 19 pages, RevTex, 4 PostScript figures, revised version to be published in Phys. Rev.

    Autowaves in a dc complex plasma confined behind a de Laval nozzle

    Full text link
    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.Comment: 6 pages, 4 figure

    Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    Get PDF
    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is estimated taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to an equilibrated plasma at the same initial energy density, taken from the self-screened parton cascade, a moderate suppression of the photon yield by a factor of one to five depending on the collision energy and the photon momentum is observed. The individual contributions to the photon production, however, are completely different in the both scenarios.Comment: 14 pages, 4 figures, shortened version to be published in Phys. Rev.

    Emittance growth in linear induction accelerators

    Full text link
    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.Comment: 20th Int. Conf. on High-Power Particle Beams, Washington, DC, May, 201

    Parton Equilibration in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate the processes leading to phase-space equilibration of parton distributions in nuclear interactions at collider energies. We derive a set of rate equations describing the chemical equilibration of gluons and quarks including medium effects on the relevant QCD transport coefficients, and discuss their consequences for parton equilibration in heavy ion collisions.Comment: 18 pages, 6 Figures appended as uuencoded PostScript files, (no changes in the previously submitted manuscript), DUKE-TH-93-4

    Expansion, Thermalization and Entropy Production in High-Energy Nuclear Collisions

    Get PDF
    The thermalization process is studied in an expanding parton gas using the Boltzmann equation with two types of collision terms. In the relaxation time approximation we determine the criteria under which a time-dependent relaxation time leads to thermalization of the partons. We calculate the entropy production due to collisions for the general time-dependent relaxation time. In a perturbative QCD approach on the other hand, we can estimate the parton collision time and its dependence on expansion time. The effective `out of equilibrium' collision time differs from the standard transport relaxation time, τtr(αs2ln(1/αs)T)1\tau_{\rm tr}\simeq(\alpha_s^2\ln(1/\alpha_s)T)^{-1}, by a weak time dependence. It is in both cases Debye screening and Landau damping that regulate the singular forward scattering processes. We find that the parton gas does thermalize eventually but only after having undergone a phase of free streaming and gradual equilibration where considerable entropy is produced (``after-burning"). The final entropy and thus particle density depends on the collision time as well as the initial conditions (a ``memory effect"). Results for entropy production are presented based upon various model estimates of early parton production.Comment: 15 pages revtex + 4 figures. Figures can be obtained by supplying address to: [email protected]

    Parton Interaction Rates in the Quark-Gluon Plasma

    Full text link
    The transport interaction rates of elastic scattering processes of thermal partons in the quark-gluon plasma are calculated beyond the leading logarithm approximation using the effective perturbation theory for QCD at finite temperatures developed by Braaten and Pisarski. The results for the ordinary and transport interaction rates obtained from the effective perturbation theory are compared to perturbative approximations based on an infrared cut-off by the Debye screening mass. The relevance of those interaction rates for a quark-gluon plasma possibly formed in ultrarelativistic heavy ion collisions are discussed.Comment: 11 pages, 2 figures (not included), REVTex, UGI-93-0

    Multiparticle production in the Glasma at NLO and plasma instabilities

    Get PDF
    We discuss the relation between multi-particle production in the Glasma at next-to-leading order and the physics of plasma instabilities.Comment: 4 pages, talk at Quark Matter 200
    corecore