2,775 research outputs found
Cooperative spin decoherence and population transfer
An ensemble of multilevel atoms is a good candidate for a quantum information
storage device. The information is encrypted in the collective ground state
atomic coherence, which, in the absence of external excitation, is decoupled
from the vacuum and therefore decoherence free. However, in the process of
manipulation of atoms with light pulses (writing, reading), one inadvertently
introduces a coupling to the environment, i.e. a source of decoherence. The
dissipation process is often treated as an independent process for each atom in
the ensemble, an approach which fails at large atomic optical depths where
cooperative effects must be taken into account. In this paper, the cooperative
behavior of spin decoherence and population transfer for a system of two,
driven multilevel-atoms is studied. Not surprisingly, an enhancement in the
decoherence rate is found, when the atoms are separated by a distance that is
small compared to an optical wavelength; however, it is found that this rate
increases even further for somewhat larger separations for atoms aligned along
the direction of the driving field's propagation vector. A treatment of the
cooperative modification of optical pumping rates and an effect of polarization
swapping between atoms is also discussed, lending additional insight into the
origin of the collective decay
Sampling functions for multimode homodyne tomography with a single local oscillator
We derive various sampling functions for multimode homodyne tomography with a
single local oscillator. These functions allow us to sample multimode
s-parametrized quasidistributions, density matrix elements in Fock basis, and
s-ordered moments of arbitrary order directly from the measured quadrature
statistics. The inevitable experimental losses can be compensated by proper
modification of the sampling functions. Results of Monte Carlo simulations for
squeezed three-mode state are reported and the feasibility of reconstruction of
the three-mode Q-function and s-ordered moments from 10^7 sampled data is
demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.
Phase-coherent transport in InN nanowires of various sizes
We investigate phase-coherent transport in InN nanowires of various diameters
and lengths. The nanowires were grown by means of plasma-assisted molecular
beam epitaxy. Information on the phase-coherent transport is gained by
analyzing the characteristic fluctuation pattern in the magneto-conductance.
For a magnetic field oriented parallel to the wire axis we found that the
correlation field mainly depends on the wire cross section, while the
fluctuation amplitude is governed by the wire length. In contrast, if the
magnetic field is oriented perpendicularly, for wires longer than approximately
200 nm the correlation field is limited by the phase coherence length. Further
insight into the orientation dependence of the correlation field is gained by
measuring the conductance fluctuations at various tilt angles of the magnetic
field.Comment: 5 pages, 5 figure
Proposal for an interference experiment to test the applicability of quantum theory to event-based processes
We analyze a single-particle Mach-Zehnder interferometer experiment in which
the path length of one arm may change (randomly or systematically) according to
the value of an external two-valued variable , for each passage of a
particle through the interferometer. Quantum theory predicts an interference
pattern that is independent of the sequence of the values of . On the other
hand, corpuscular models that reproduce the results of quantum optics
experiments carried out up to this date show a reduced visibility and a shift
of the interference pattern depending on the details of the sequence of the
values of . The proposed experiment will show that: (1) it can be described
by quantum theory, and thus not by the current corpuscular models, or (2) it
cannot be described by quantum theory but can be described by the corpuscular
models or variations thereof, or (3) it can neither be described by quantum
theory nor by corpuscular models. Therefore, the proposed experiment can be
used to determine to what extent quantum theory provides a description of
observed events beyond the usual statistical level.Comment: Accepted for publication in J. Phys. Soc. Jp
A solvable model of a random spin-1/2 XY chain
The paper presents exact calculations of thermodynamic quantities for the
spin-1/2 isotropic XY chain with random lorentzian intersite interaction and
transverse field that depends linearly on the surrounding intersite
interactions.Comment: 14 pages (Latex), 2 tables, 13 ps-figures included, (accepted for
publication in Phys.Rev.B
Complete eigenstates of identical qubits arranged in regular polygons
We calculate the energy eigenvalues and eigenstates corresponding to coherent
single and multiple excitations of an array of N identical qubits or two-level
atoms (TLA's) arranged on the vertices of a regular polygon. We assume only
that the coupling occurs via an exchange interaction which depends on the
separation between the qubits. We include the interactions between all pairs of
qubits, and our results are valid for arbitrary distances relative to the
radiation wavelength. To illustrate the usefulness of these states, we plot the
distance dependence of the decay rates of the n=2 (biexciton) eigenstates of an
array of 4 qubits, and tabulate the biexciton eigenvalues and eigenstates, and
absorption frequencies, line widths, and relative intensities for polygons
consisting of N=2,...,9 qubits in the long-wavelength limit.Comment: Added a figure showing how these results can be used to compute
deviations from "equal collective decoherence" approximation
Direct sampling of exponential phase moments of smoothed Wigner functions
We investigate exponential phase moments of the s-parametrized
quasidistributions (smoothed Wigner functions). We show that the knowledge of
these moments as functions of s provides, together with photon-number
statistics, a complete description of the quantum state. We demonstrate that
the exponential phase moments can be directly sampled from the data recorded in
balanced homodyne detection and we present simple expressions for the sampling
kernels. The phase moments are Fourier coefficients of phase distributions
obtained from the quasidistributions via integration over the radial variable
in polar coordinates. We performed Monte Carlo simulations of the homodyne
detection and we demonstrate the feasibility of direct sampling of the moments
and subsequent reconstruction of the phase distribution.Comment: RevTeX, 8 pages, 6 figures, accepted Phys. Rev.
Thermodynamic properties of spin-1/2 transverse XY chain with Dzyaloshinskii-Moriya interaction: Exact solution for correlated Lorentzian disorder
We extend the consideration of the spin-1/2 transverse XY chain with
correlated Lorentzian disorder (Phys. Rev. B {\bf 55,} 14298 (1997)) for the
case of additional Dzyaloshinskii-Moriya interspin interaction. It is shown how
the averaged density of states can be calculated exactly. Results are presented
for the density of states and the transverse magnetization.Comment: 2 figure
- …