4,968 research outputs found
Magnetisation distribution in the tetragonal phase of BaFe2As2
We have determined the spatial distribution of the magnetisation induced by a
field of 9 T in the tetragonal phase of BaFe2As2 using polarised neutron
diffraction. Magnetic structure factors derived from the polarisation
dependence of the intensities of Bragg reflections were used to make a maximum
entropy reconstruction of the distribution projected on the 110 plane. The
reconstruction shows clearly that the magnetisation is confined to the region
around the iron atoms and that there is no significant magnetisation associated
with either the As or Ba atoms. The distribution of magnetisation around the Fe
atom is significantly non-spherical with a shape which is extended in the
directions in the projection. These results show that the electrons which give
rise to the paramagnetic susceptibility are confined to the Fe atoms their
distribution suggests that they occupy 3d t_2g type orbitals with about 60% in
those of xy symmetry
Inelastic neutron scattering study of crystal field excitations of Nd<sup>3+</sup> in NdFeAsO
Inelastic neutron scattering experiments were performed to investigate the
crystalline electric field (CEF) excitations of Nd3+ (J = 9/2) in the iron
pnictide NdFeAsO. The crystal field level structures for both the
high-temperature paramagnetic phase and the low-temperature antiferromagnetic
phase of NdFeAsO are constructed. The variation of CEF excitations of Nd3+
reflects not only the change of local symmetry but also the change of magnetic
ordered state of the Fe sublattice. By analyzing the crystal field interaction
with a crystal field Hamiltonian, the crystal field parameters are obtained. It
was found that the sign of the fourth and sixth-order crystal field parameters
change upon the magnetic phase transition at 140 K, which may be due to the
variation of exchange interactions between the 4f and conduction electrons.Comment: 5 pages, 4 figure
Magnetic order in CaFe1-xCoxAsF (x = 0, 0.06, 0.12) superconductor compounds
A Neutron Powder Diffraction (NPD) experiment has been performed to
investigate the structural phase transition and magnetic order in CaFe1-xCoxAsF
superconductor compounds (x = 0, 0.06, 0.12). The parent compound CaFeAsF
undergoes a tetragonal to orthorhombic phase transition at 134(3) K, while the
magnetic order in form of a spin-density wave (SDW) sets in at 114(3) K. The
antiferromagnetic structure of the parent compound has been determined with a
unique propagation vector k = (1,0,1) and the Fe saturation moment of 0.49(5)uB
aligned along the long a-axis. With increasing Co doping, the long range
antiferromagnetic order has been observed to coexist with superconductivity in
the orthorhombic phase of the underdoped CaFe0.94Co0.06AsF with a reduced Fe
moment (0.15(5)uB). Magnetic order is completely suppressed in optimally doped
CaFe0.88Co0.12AsF. We argue that the coexistence of SDW and superconductivity
might be related to mesoscopic phase separation.Comment: 4pages, 4figure
Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction
High resolution inelastic neutron scattering reveals that the elementary
magnetic excitations in multiferroic MnWO4 consist of low energy dispersive
electromagnons in addition to the well-known spin-wave excitations. The latter
can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling
extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1)
meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and
0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric
coupling and persist in both, the collinear magnetic and paraelectric AF1
phase, and the spin spiral ferroelectric AF2 phase. These excitations are
associated with the Dzyaloshinskii-Moriya exchange interaction, which is
significant due to the rather large spin-orbit coupling.Comment: 8 pages, 6 figures, accepted for publication in Physical Review
Magnetization distribution and orbital moment in the non-Superconducting Chalcogenide Compound K0.8Fe1.6Se2
We have used polarized and unpolarized neutron diffraction to determine the
spatial distribution of the magnetization density induced by a magnetic field
of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum entropy
reconstruction shows clearly that most of the magnetization is confined to the
region around the iron atoms whereas there is no significant magnetization
associated with either Se or K atoms. The distribution of magnetization around
the Fe atom is slightly nonspherical with a shape which is extended along the
[0 0 1] direction in the projection. Multipolar refinement results show that
the electrons which give rise to the paramagnetic susceptibility are confined
to the Fe atoms and their distribution suggests that they occupy 3d t2g-type
orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the
magnetic form factor indicates the presence of an orbital moment to the total
paramagnetic moment of Fe2+Comment: 7 pages, accepted for publication in Physical Review
Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19
The magnetic structure of the Eu2+ moments in the superconducting
EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron
scattering. We conclude that the Eu2+ moments are aligned along the c direction
below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the
superconducting state. An impurity phase similar to the underdoped phase exists
within the bulk sample which orders antiferromagnetically below T_N = 17.0(2)
K. We found no indication of iron magnetic order, nor any incommensurate
magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article
Magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 as revealed by single-crystal neutron diffraction
The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is
unambiguously determined by single-crystal neutron diffraction. A long-range
ferromagnetic order of the Eu2+ moments along the c-direction is revealed below
the magnetic phase transition temperature Tc = 17 K. In addition, the
antiferromagnetism of the Fe2+ moments still survives and the
tetragonal-to-orthorhombic structural phase transition is also observed,
although the transition temperatures of the Fe-spin density wave (SDW) order
and the structural phase transition are significantly suppressed to Tn = 70 K
and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We
present the microscopic evidences for the coexistence of the Eu-ferromagnetism
(FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC)
competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison
between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable
influence of the rare-earth element Eu on the magnetism of the Fe sublattice.Comment: 7 pages, 7 figures, accepted for publication in Physical Review
Heat flow method to Lichnerowicz type equation on closed manifolds
In this paper, we establish existence results for positive solutions to the
Lichnerowicz equation of the following type in closed manifolds -\Delta
u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M, where , and ,
are given smooth functions. Our analysis is based on the global
existence of positive solutions to the following heat equation {ll} u_t-\Delta
u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M\times\mathbb{R}^{+}, u(x,0)=u_0,\quad
in\quad M with the positive smooth initial data .Comment: 10 page
Magnetic structure of EuFe2As2 determined by single crystal neutron diffraction
Among various parent compounds of iron pnictide superconductors, EuFe2As2
stands out due to the presence of both spin density wave of Fe and
antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal
neutron diffraction studies have been carried out to determine the magnetic
structure of this compound and to investigate the coupling of two magnetic
sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190
K and 19 K, respectively. The ordering of Fe2+ moments is associated with the
wave vector k = (1,0,1) and it takes place at the same temperature as the
tetragonal to orthorhombic structural phase transition, which indicates the
strong coupling between structural and magnetic components. The ordering of Eu
moment is associated with the wave vector k = (0,0,1). While both Fe and Eu
spins are aligned along the long a axis as experimentally determined, our
studies suggest a weak coupling between the Fe and Eu magnetism.Comment: 7 pages, 7 figure
Non-collinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7
The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced
magnetization plateaus and ferroelectricity, but its magnetic ground state
remains ambiguous due to its structural complexity. Magnetometry measurements,
and time-of-flight neutron powder diffraction (NPD) have been employed to study
the structural and magnetic properties of Co2V2O7, which consists of two
non-equivalent Co sites. Upon cooling below the Ne\'el temperature TN = 6.3 K,
we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of
long range magnetic order of Co2+ moments. After symmetry analysis and magnetic
structure refinement, we demonstrate that Co2V2O7 possesses a complicated
non-collinear magnetic ground state with Co moments mainly located in b-c plane
and forming a non-collinear spin-chain-like structure along the c-axis. The ab
initio calculations demonstrate that the non-collinear magnetic structure is
more stable than various ferromagnetic states at low temperature. The
non-collinear magnetic structure with canted up-up-down-down spin configuration
is considered as the origin of magnetoelectric coupling in Co2V2O7 because the
inequivalent exchange striction induced by the spin-exchange interaction
between the neighboring spins is the driving force of ferroelectricity.
Besides, it is found that the deviation of lattice parameters a and b is
opposite below TN, while the lattice parameter c and stay almost constant below
TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.Comment: 9 pages, 8 figure
- …