10 research outputs found

    Cell Encapsulation in Sub-mm Sized Gel Modules Using Replica Molding

    Get PDF
    For many types of cells, behavior in two-dimensional (2D) culture differs from that in three-dimensional (3D) culture. Among biologists, 2D culture on treated plastic surfaces is currently the most popular method for cell culture. In 3D, no analogous standard method—one that is similarly convenient, flexible, and reproducible—exists. This paper describes a soft-lithographic method to encapsulate cells in 3D gel objects (modules) in a variety of simple shapes (cylinders, crosses, rectangular prisms) with lateral dimensions between 40 and 1000 μm, cell densities of 105 – 108 cells/cm3, and total volumes between 1×10−7 and 8×10−4 cm3. By varying (i) the initial density of cells at seeding, and (ii) the dimensions of the modules, the number of cells per module ranged from 1 to 2500 cells. Modules were formed from a range of standard biopolymers, including collagen, Matrigel™, and agarose, without the complex equipment often used in encapsulation. The small dimensions of the modules allowed rapid transport of nutrients by diffusion to cells at any location in the module, and therefore allowed generation of modules with cell densities near to those of dense tissues (108 – 109 cells/cm3). This modular method is based on soft lithography and requires little special equipment; the method is therefore accessible, flexible, and well suited to (i) understanding the behavior of cells in 3D environments at high densities of cells, as in dense tissues, and (ii) developing applications in tissue engineering

    Antenatal magnesium individual participant data international collaboration: assessing the benefits for babies using the best level of evidence (AMICABLE)

    Get PDF
    BACKGROUND: The primary aim of this study is to assess, using individual participant data (IPD) meta-analysis, the effects of administration of antenatal magnesium sulphate given to women at risk of preterm birth on important clinical outcomes for their child such as death and neurosensory disability. The secondary aim is to determine whether treatment effects differ depending on important pre-specified participant and treatment characteristics, such as reasons at risk of preterm birth, gestational age, or type, dose and mode of administration of magnesium sulphate. METHODS: Design: The Antenatal Magnesium Individual Participant Data (IPD) International Collaboration: assessing the benefits for babies using the best level of evidence (AMICABLE) Group will perform an IPD meta-analysis to answer these important clinical questions. Setting/Timeline: The AMICABLE Group was formed in 2009 with data collection commencing late 2010. Inclusion Criteria: Five trials involving a total 6,145 babies are eligible for inclusion in the IPD meta-analysis. Primary study outcomes: For the infants/children: Death or cerebral palsy. For the women: Any severe maternal outcome potentially related to treatment (death, respiratory arrest or cardiac arrest). DISUCSSION: Results are expected to be publicly available in 2012.C.A. Crowther, P.F. Middleton, L.M. Askie, L.W. Doyle, T.K. Bubner and M. Voyse
    corecore