2,314 research outputs found

    Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering

    Get PDF
    We use polarized inelastic neutron scattering (INS) to study spin excitations of optimally hole-doped superconductor Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_{2} (Tc=38T_c=38 K). In the normal state, the imaginary part of the dynamic susceptibility, χ(Q,ω)\chi^{\prime\prime}(Q,\omega), shows magnetic anisotropy for energies below \sim7 meV with c-axis polarized spin excitations larger than that of the in-plane component. Upon entering into the superconducting state, previous unpolarized INS experiments have shown that spin gaps at \sim5 and 0.75 meV open at wave vectors Q=(0.5,0.5,0)Q=(0.5,0.5,0) and (0.5,0.5,1)(0.5,0.5,1), respectively, with a broad neutron spin resonance at Er=15E_r=15 meV. Our neutron polarization analysis reveals that the large difference in spin gaps is purely due to different spin gaps in the c-axis and in-plane polarized spin excitations, resulting resonance with different energy widths for the c-axis and in-plane spin excitations. The observation of spin anisotropy in both opitmally electron and hole-doped BaFe2_2As2_2 is due to their proximity to the AF ordered BaFe2_2As2_2 where spin anisotropy exists below TNT_N.Comment: 5 pages, 4 figure

    Scaling of the Fano effect of the in-plane Fe-As phonon and the superconducting critical temperature in Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}

    Full text link
    By means of infrared spectroscopy we determine the temperature-doping phase diagram of the Fano effect for the in-plane Fe-As stretching mode in Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}. The Fano parameter 1/q21/q^2, which is a measure of the phonon coupling to the electronic particle-hole continuum, shows a remarkable sensitivity to the magnetic/structural orderings at low temperatures. More strikingly, at elevated temperatures in the paramagnetic/tetragonal state we find a linear correlation between 1/q21/q^2 and the superconducting critical temperature TcT_c. Based on theoretical calculations and symmetry considerations, we identify the relevant interband transitions that are coupled to the Fe-As mode. In particular, we show that a sizable xyxy orbital component at the Fermi level is fundamental for the Fano effect and possibly also for the superconducting pairing.Comment: Supplemental materials are available upon reques

    Distinguishing s±s^{\pm} and s++s^{++} electron pairing symmetries by neutron spin resonance in superconducting NaFe0.935_{0.935}Co0.045_{0.045}As

    Get PDF
    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s±s^\pm-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E2ΔE\leq 2\Delta) below TcT_c. On the other hand, the s++s^{++}-pairing symmetry expects a broad spin excitation enhancement at an energy above 2Δ2\Delta below TcT_c. Although the resonance has been observed in iron pnictide superconductors at an energy below 2Δ2\Delta consistent with the s±s^\pm-pairing symmetry, the mode has also be interpreted as arising from the s++s^{++}-pairing symmetry with E2ΔE\ge 2\Delta due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E=7 meV in SC NaFe0.935_{0.935}Co0.045_{0.045}As (Tc=18T_c = 18 K). On warming towards TcT_c, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitations spectra within the s±s^{\pm} and s++s^{++}-pairing symmetries, we conclude that the ground-state resonance in NaFe0.935_{0.935}Co0.045_{0.045}As is only consistent with the s±s^{\pm}-pairing, and is inconsistent with the s++s^{++}-pairing symmetry.Comment: 9 pages, 8 figures. submitted to PR

    Surface waves in photonic crystal slabs

    Full text link
    Photonic crystals with a finite size can support surface modes when appropriately terminated. We calculate the dispersion curves of surface modes for different terminations using the plane wave expansion method. These non-radiative surface modes can be excited with the help of attenuated total reflection technique. We did experiments and simulations to trace the surface band curve, both in good agreement with the numerical calculations

    Experimental Verification of the Quantized Conductance of Photonic Crystal Waveguides

    Full text link
    We report experiments that demonstrate the quantization of the conductance of photonic crystal waveguides. To obtain a diffusive wave, we have added all the transmitted channels for all the incident angles. The conductance steps have equal height and a width of one half the wavelength used. Detailed numerical results agree very well with the novel experimental results.Comment: Phys. Rev. B (submitted

    Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction

    Full text link
    High real-space-resolution atomic pair distribution functions of La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO_6 octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95 and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and T=20K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.

    Teleportation-based realization of an optical quantum two-qubit entangling gate

    Full text link
    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by Gottesman and Chuang [Nature \textbf{402}, 390 (1999)], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multi-particle entangled states, Bell state measurements and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods we demonstrate the smallest non-trivial module in such a scheme---a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates and the other uses four-photon hyper-entanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step towards the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.Comment: 10 pages, 6 figure

    Doctor-diagnosed sleep apnoea in Hong Kong adolescents: prevalence and associations with night-eating and dinner time

    Get PDF
    Li Ka Shing Faculty of Medicine Frontiers SeriesSession -: Big Data and Precision Medicine: e-Poster no. 17Symposia Theme: ‘MOOCs in Postmodern Asia’ (Oct 27, 2014) and ‘Big Data and Precision Medicine’ (Oct 28, 2014)published_or_final_versio
    corecore