11 research outputs found

    A Computational Approach to Analyze the Mechanism of Action of the Kinase Inhibitor Bafetinib

    Get PDF
    Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis

    Ultraviolet Irradiation Induces the Accumulation of Chondroitin Sulfate, but Not Other Glycosaminoglycans, in Human Skin

    Get PDF
    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV

    Pathway Analysis for Genome-Wide Association Study of Basal Cell Carcinoma of the Skin

    Get PDF
    Recently, a pathway-based approach has been developed to evaluate the cumulative contribution of the functionally related genes for genome-wide association studies (GWASs), which may help utilize GWAS data to a greater extent.In this study, we applied this approach for the GWAS of basal cell carcinoma (BCC) of the skin. We first conducted the BCC GWAS among 1,797 BCC cases and 5,197 controls in Caucasians with 740,760 genotyped SNPs. 115,688 SNPs were grouped into gene transcripts within 20 kb in distance and then into 174 Kyoto Encyclopedia of Genes and Genomes pathways, 205 BioCarta pathways, as well as two positive control gene sets (pigmentation gene set and BCC risk gene set). The association of each pathway with BCC risk was evaluated using the weighted Kolmogorov-Smirnov test. One thousand permutations were conducted to assess the significance.Both of the positive control gene sets reached pathway p-values<0.05. Four other pathways were also significantly associated with BCC risk: the heparan sulfate biosynthesis pathway (p  =  0.007, false discovery rate, FDR  =  0.35), the mCalpain pathway (p  =  0.002, FDR  =  0.12), the Rho cell motility signaling pathway (p  =  0.011, FDR  =  0.30), and the nitric oxide pathway (p  =  0.022, FDR  =  0.42).We identified four pathways associated with BCC risk, which may offer new insights into the etiology of BCC upon further validation, and this approach may help identify potential biological pathways that might be missed by the standard GWAS approach

    The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs.</p> <p>Methods</p> <p>Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated.</p> <p>Results</p> <p>We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity.</p> <p>Conclusion</p> <p>Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.</p

    Long noncoding RNA HOTAIR

    No full text

    Specificity of BCR-ABL antisense oligonucleotides [letter; comment]

    No full text

    Specificity of BCR-ABL antisense oligonucleotides [letter; comment]

    No full text

    Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173.

    No full text
    BCR-ABL antisense oligonucleotides can specifically reduce colony formation of early hematopoietic progenitor cells from chronic myeloid leukemia (CML) patients. Little is known about the mechanism of this inhibition. We studied the inhibition of the bcr-abl oncogene using fluorescein-labeled phosphorothioate oligonucleotides in the Philadelphia chromosome-positive cell line BV173. Oligonucleotide stability, uptake, bcr-abl mRNA degradation, inhibition of cell proliferation, and cell death were studied. The oligonucleotide uptake was directly dependent on the extracellular concentration and was constant over the first 18 h of incubation. After that the uptake rate decreased. We detected a decrease in bcr-abl mRNA after 3 days of treatment with antisense oligonucleotides, but much less in controls. The controls used in the experiments were the sense oligonucleotide, equimolar amounts of sense and antisense, and an untreated control. Antisense oligonucleotides completely inhibited cell growth of BV173 cells and did not inhibit growth of HL-60 cells, whereas control oligonucleotides had no such effect on either cell line. An oligonucleotide specific for the other CML breakpoint was also effective in reducing cell growth of BV173. By the use of a DNA double staining technique to discriminate between necrotic and apoptotic cells, we detected a large number of apoptotic cells in antisense treated BV173 cultures after 5 days of treatment as compared to controls. We conclude that antisense BCR-ABL oligonucleotides reduce bcr-abl mRNA expression in BV173 cells mainly in a sequence-specific manner and induce apoptosis
    corecore