20 research outputs found

    Detection of distant evolutionary relationships between protein families using theory of sequence profile-profile comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of common evolutionary origin (homology) is a primary means of inferring protein structure and function. At present, comparison of protein families represented as sequence profiles is arguably the most effective homology detection strategy. However, finding the best way to represent evolutionary information of a protein sequence family in the profile, to compare profiles and to estimate the biological significance of such comparisons, remains an active area of research.</p> <p>Results</p> <p>Here, we present a new homology detection method based on sequence profile-profile comparison. The method has a number of new features including position-dependent gap penalties and a global score system. Position-dependent gap penalties provide a more biologically relevant way to represent and align protein families as sequence profiles. The global score system enables an analytical solution of the statistical parameters needed to estimate the statistical significance of profile-profile similarities. The new method, together with other state-of-the-art profile-based methods (HHsearch, COMPASS and PSI-BLAST), is benchmarked in all-against-all comparison of a challenging set of SCOP domains that share at most 20% sequence identity. For benchmarking, we use a reference ("gold standard") free model-based evaluation framework. Evaluation results show that at the level of protein domains our method compares favorably to all other tested methods. We also provide examples of the new method outperforming structure-based similarity detection and alignment. The implementation of the new method both as a standalone software package and as a web server is available at <url>http://www.ibt.lt/bioinformatics/coma</url>.</p> <p>Conclusion</p> <p>Due to a number of developments, the new profile-profile comparison method shows an improved ability to match distantly related protein domains. Therefore, the method should be useful for annotation and homology modeling of uncharacterized proteins.</p

    A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes

    Get PDF
    Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism

    Protein 3D Structure Computed from Evolutionary Sequence Variation

    Get PDF
    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing

    MRI Study of Minor Physical Anomaly in Childhood Autism Implicates Aberrant Neurodevelopment in Infancy

    Get PDF
    Background: MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. Methods: We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Results: Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Conclusions: Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism. © 2011 Cheung et al.published_or_final_versio

    Promising degrees of stakeholder interaction in research for sustainable development

    Get PDF
    Stakeholder interactions are increasingly viewed as an important element of research for sustainable development. But to what extent, how, and for which goals should stakeholders be involved? In this article, we explore what degrees of stakeholder interaction show the most promise in research for sustainable development. For this purpose, we examine 16 research projects from the transdisciplinary research programme NRP 61 on sustainable water management in Switzerland. The results suggest that various degrees of stakeholder interaction can be beneficial depending on each project’s intended contribution to sustainability, the form of knowledge desired, how contested the issues are, the level of actor diversity, actors’ interests, and existing collaborations between actors. We argue that systematic reflection about these six criteria can enable tailoring stakeholder interaction processes according specific project goals and context conditions
    corecore