15 research outputs found

    Die Herpes-Virus-Krankheit A und die Herpes-Virus-Krankheit B

    No full text

    Multifactorial diversity sustains microbial community stability

    No full text
    Item does not contain fulltextMaintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty

    Common swine models of cardiovascular disease for research and training

    No full text
    Cardiovascular diseases are a major health concern and therefore an important topic in biomedical research. Large animal models allow researchers to assess the safety and efficacy of new cardiovascular procedures in systems that resemble human anatomy; additionally, they can be used to emulate scenarios for training purposes. Among the many biomedical models that are described in published literature, it is important that researchers understand and select those that are best suited to achieve the aims of their research, that facilitate the humane care and management of their research animals and that best promote the high ethical standards required of animal research. In this resource the authors describe some common swine models that can be easily incorporated into regular practices of research and training at biomedical institutions. These models use both native and altered vascular anatomy of swine to carry out research protocols, such as testing biological reactions to implanted materials, surgically creating aneurysms using autologous tissue and inducing myocardial infarction through closed-chest procedures. Such models can also be used for training, where native and altered vascular anatomy allow medical professionals to learn and practice challenging techniques in anatomy that closely simulates human systems.74670,1660,767Q4Q3SCI

    Biochemistry of Cheese Ripening

    No full text
    corecore