44 research outputs found

    Fatal Pseudomonas aeruginosa pneumonia in a previously healthy woman was most likely associated with a contaminated hot tub

    Get PDF
    Community-acquired pneumonia due to Pseudomonas aeruginosa in previously healthy individuals is a rare disease that is associated with high fatality. On 14 February 2010 a previously healthy 49-year-old woman presented to an emergency room with signs and symptoms of pneumonia, 2 days after returning from a spa holiday in a wellness hotel. Blood cultures and respiratory specimens grew P. aeruginosa. Despite adequate antimicrobial therapy, the patient died of septic multiorgan failure on day nine of hospitalization. On February 26, nine water samples were taken from the hotel facilities used by the patient: In the hot tub sample 37,000 colony-forming units of P. aeruginosa/100 ml were detected. Two of five individual colonies from the primary plate used for this hot tub water sample were found to be genetically closely related to the patients’ isolates. Results from PFGE, AFLP and MLST analysis allowed the two lung isolates gained at autopsy and the whirlpool bathtub isolates to be allocated into one cluster. The patient most likely acquired P. aeruginosa from the contaminated water in the hotel’s hot tub. The detection of P. aeruginosa in high numbers in a hot tub indicates massive biofilm formation in the bath circulation and severe deficiencies in hygienic maintenance. The increasing popularity of hot tubs in hotels and private homes demands increased awareness about potential health risks associated with deficient hygienic maintenance

    Estimating Sensitivity of Laboratory Testing for Influenza in Canada through Modelling

    Get PDF
    Background: The weekly proportion of laboratory tests that are positive for influenza is used in public health surveillance systems to identify periods of influenza activity. We aimed to estimate the sensitivity of influenza testing in Canada based on results of a national respiratory virus surveillance system. Methods and Findings: The weekly number of influenza-negative tests from 1999 to 2006 was modelled as a function of laboratory-confirmed positive tests for influenza, respiratory syncytial virus (RSV), adenovirus and parainfluenza viruses, seasonality, and trend using Poisson regression. Sensitivity was calculated as the number of influenza positive tests divided by the number of influenza positive tests plus the model-estimated number of false negative tests. The sensitivity of influenza testing was estimated to be 33 % (95%CI 32–34%), varying from 30–40 % depending on the season and region. Conclusions: The estimated sensitivity of influenza tests reported to this national laboratory surveillance system is considerably less than reported test characteristics for most laboratory tests. A number of factors may explain this difference, including sample quality and specimen procurement issues as well as test characteristics. Improved diagnosis would permit better estimation of the burden of influenza

    Lack of association between serological evidence of past Coxiella burnetii infection and incident ischaemic heart disease: nested case-control study

    Get PDF
    BACKGROUND: Coxiella burnetii causes the common worldwide zoonotic infection, Q fever. It has been previously suggested that patients who had recovered from acute Q fever (whether symptomatic or otherwise) may be at increased risk of ischaemic heart disease. We undertook this study to determine if past infection with Coxiella burnetii, the aetiological agent of Q fever, is a risk factor for the subsequent development of ischaemic heart disease. METHODS: A nested case-control study within the Prospective Epidemiological Study of Myocardial Infarction (PRIME). The PRIME study is a cohort study of 10,593 middle-aged men undertaken in France and Northern Ireland in the 1990s. A total of 335 incident cases of ischaemic heart disease (IHD) were identified and each case was matched to 2 IHD free controls. Q fever seropositivity was determined using a commercial IgG ELISA method. RESULTS: Seroprevalence of Q fever in the controls from Northern Ireland and France were 7.8% and 9.0% respectively. No association was seen between seropositivity and age, smoking, lipid levels, or inflammatory markers. The unadjusted odds ratio (95% CI) for Q fever seropositivity in cases compared to controls was 0.95 (0.59, 1.57). The relationship was substantially unaltered following adjustment for cardiovascular risk factors and potential confounders. CONCLUSION: Serological evidence of past infection with C. burnetii was not found to be associated with an increased risk of IHD

    De novo identification of viral pathogens from cell culture hologenomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes.</p> <p>Findings</p> <p>We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and <it>de-novo </it>assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to <it>Japanese encephalitis </it>virus. The genome of the virus was also independently <it>de-novo </it>assembled. The presence of the virus was in addition, verified using standard molecular biology techniques.</p> <p>Conclusions</p> <p>Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.</p

    One-year follow-up of patients of the ongoing Dutch Q fever outbreak: clinical, serological and echocardiographic findings

    Get PDF
    Contains fulltext : 89915.pdf (publisher's version ) (Open Access)PURPOSE: In 2007, a large goat-farming-associated Q fever outbreak occurred in the Netherlands. Data on the clinical outcome of Dutch Q fever patients are lacking. The current advocated follow-up strategy includes serological follow-up to detect evolution to chronic disease and cardiac screening at baseline to identify and prophylactically treat Q fever patients in case of valvulopathy. However, serological follow-up using commercially available tests is complicated by the lack of validated cut-off values. Furthermore, cardiac screening in the setting of a large outbreak has not been implemented previously. Therefore, we report here the clinical outcome, serological follow-up and cardiac screening data of the Q fever patients of the current ongoing outbreak. METHODS: The implementation of a protocol including clinical and serological follow-up at baseline and 3, 6 and 12 months after acute Q fever and screening echocardiography at baseline. RESULTS: Eighty-five patients with acute Q fever were identified (male 62%, female 38%). An aspecific, flu-like illness was the most common clinical presentation. Persistent symptoms after acute Q fever were reported by 59% of patients at 6 months and 30% at 12 months follow-up. We observed a typical serological response to Coxiella burnetii infection in both anti-phase I and anti-phase II IgG antibodies, with an increase in antibody titres up to 3 months and a subsequent decrease in the following 9 months. Screening echocardiography was available for 66 (78%) out of 85 Q fever patients. Cardiac valvulopathy was present in 39 (59%) patients. None of the 85 patients developed chronic Q fever. CONCLUSIONS: Clinical, serological and echocardiographic data of the current ongoing Dutch Q fever outbreak cohort are presented. Screening echocardiography is no longer part of the standard work-up of Q fever patients in the Netherlands.1 december 201

    A Complete Analysis of HA and NA Genes of Influenza A Viruses

    Get PDF
    BACKGROUND: More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza. METHODOLOGY/PRINCIPAL FINDINGS: This paper describes an analysis and complete classification of all HA and NA gene sequences available in public databases using multivariate and phylogenetic methods. CONCLUSIONS/SIGNIFICANCE: We analyzed 18,975 HA sequences and divided them into 280 subgroups according to multivariate and phylogenetic analyses. Similarly, we divided 11,362 NA sequences into 202 subgroups. Compared to previous analyses, this work is more detailed and comprehensive, especially for the bigger datasets. Therefore, it can be used to show the full and complex phylogenetic diversity and provides a framework for studying the molecular evolution and epidemiology of type A influenza virus. For more than 85% of type A influenza HA and NA sequences into GenBank, they are categorized in one unambiguous and unique group. Therefore, our results are a kind of genetic and phylogenetic annotation for influenza HA and NA sequences. In addition, sequences of swine influenza viruses come from 56 HA and 45 NA subgroups. Most of these subgroups also include viruses from other hosts indicating cross species transmission of the viruses between pigs and other hosts. Furthermore, the phylogenetic diversity of swine influenza viruses from Eurasia is greater than that of North American strains and both of them are becoming more diverse. Apart from viruses from human, pigs, birds and horses, viruses from other species show very low phylogenetic diversity. This might indicate that viruses have not become established in these species. Based on current evidence, there is no simple pattern of inter-hemisphere transmission of avian influenza viruses and it appears to happen sporadically. However, for H6 subtype avian influenza viruses, such transmissions might have happened very frequently and multiple and bidirectional transmission events might exist

    The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds

    Get PDF
    We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses

    Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance

    No full text
    Together with influenza, the non-influenza RNA respiratory viruses (NIRVs), which include respiratory syncytial virus, parainfluenza viruses, coronavirus, rhinovirus, and human metapneumovirus, represent a considerable global health burden, as recognised by WHO's Battle against Respiratory Viruses initiative. By contrast with influenza viruses, little is known about the contemporaneous global diversity of these viruses, and the relevance of such for development of pharmaceutical interventions. Although far less advanced than for influenza, antiviral drugs and vaccines are in different stages of development for several of these viruses, but no interventions have been licensed. This scarcity of global genetic data represents a substantial knowledge gap and impediment to the eventual licensing of new antiviral drugs and vaccines for NIRVs. Enhanced genetic surveillance will assist and boost research and development into new antiviral drugs and vaccines for these viruses. Additionally, understanding the global diversity of respiratory viruses is also part of emerging disease preparedness, because non-human coronaviruses and paramyxoviruses have been listed as priority concerns in a recent WHO research and development blueprint initiative for emerging infectious diseases. In this Personal View, we explain further the rationale for expanding the genetic database of NIRVs and emphasise the need for greater investment in this area of research
    corecore