1,452 research outputs found

    Chandra view of Kes 79: a nearly isothermal SNR with rich spatial structure

    Full text link
    A 30 ks \chandra ACIS-I observation of Kes 79 reveals rich spatial structures, including many filaments, three partial shells, a loop and a ``protrusion''. Most of them have corresponding radio features. Regardless of the different results from two non-equilibrium ionization (NEI) codes, temperatures of different parts of the remnant are all around 0.7 keV, which is surprisingly constant for a remnant with such rich structure. If thermal conduction is responsible for smoothing the temperature gradient, a lower limit on the thermal conductivity of ∌\sim 1/10 of the Spitzer value can be derived. Thus, thermal conduction may play an important role in the evolution of at least some SNRs. No spectral signature of the ejecta is found, which suggests the ejecta material has been well mixed with the ambient medium. From the morphology and the spectral properties, we suggest the bright inner shell is a wind-driven shell (WDS) overtaken by the blast wave (the outer shell) and estimate the age of the remnant to be ∌\sim 6 kyr for the assumed dynamics. Projection is also required to explain the complicated morphology of Kes 79.Comment: 12 pages, 6 figures (3 in color), ApJ, in press, April 20, 200

    Initial Ionization of Compressible Turbulence

    Full text link
    We study the effects of the initial conditions of turbulent molecular clouds on the ionization structure in newly formed H_{ii} regions, using three-dimensional, photon-conserving radiative transfer in a pre-computed density field from three-dimensional compressible turbulence. Our results show that the initial density structure of the gas cloud can play an important role in the resulting structure of the H_{ii} region. The propagation of the ionization fronts, the shape of the resulting H_{ii} region, and the total mass ionized depend on the properties of the turbulent density field. Cuts through the ionized regions generally show ``butterfly'' shapes rather than spherical ones, while emission measure maps are more spherical if the turbulence is driven on scales small compared to the size of the H_{ii} region. The ionization structure can be described by an effective clumping factor ζ=<n>⋅/2\zeta=< n > \cdot /^2, where nn is number density of the gas. The larger the value of ζ\zeta, the less mass is ionized, and the more irregular the H_{ii} region shapes. Because we do not follow dynamics, our results apply only to the early stage of ionization when the speed of the ionization fronts remains much larger than the sound speed of the ionized gas, or Alfv\'en speed in magnetized clouds if it is larger, so that the dynamical effects can be negligible.Comment: 9 pages, 10 figures, version with high quality color images can be found in http://research.amnh.org/~yuexing/astro-ph/0407249.pd

    Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation

    Full text link
    We analyze the dynamical expansion of the HII region, photodissociation region, and the swept-up shell, solving the UV- and FUV-radiative transfer, the thermal and chemical processes in the time-dependent hydrodynamics code. Following our previous paper, we investigate the time evolutions with various ambient number densities and central stars. Our calculations show that basic evolution is qualitatively similar among our models with different parameters. The molecular gas is finally accumulated in the shell, and the gravitational fragmentation of the shell is generally expected. The quantitative differences among models are well understood with analytic scaling relations. The detailed physical and chemical structure of the shell is mainly determined by the incident FUV flux and the column density of the shell, which also follow the scaling relations. The time of shell-fragmentation, and the mass of the gathered molecular gas are sensitive tothe ambient number density. In the case of the lower number density, the shell-fragmentation occurs over a longer timescale, and the accumulated molecular gas is more massive. The variations with different central stars are more moderate. The time of the shell-fragmentation differs by a factor of several with the various stars of M_* = 12-101 M_sun. According to our numerical results, we conclude that the expanding HII region should be an efficient trigger for star formation in molecular clouds if the mass of the ambient molecular material is large enough.Comment: 49 pages, including 17 figures ; Accepted for publication in Ap

    The Hystery Unit - A Short Term Memory Model for Computational Neurons

    Get PDF
    In this paper, a model of short term memory is introduced. This model is inspired by the transient behavior of neurons and magnetic storage as memory. The transient response of a neuron is hypothesized to be a combination of a pair of sigmoids, and a relation is drawn to the hysteresis loop characteristics of magnetic materials. A model is created as a composition of two coupled families of curves. Two theorems are derived regarding the asymptotic convergence behavior of the model. Another conjecture claims that the model retains full memory of all past unit step inputs

    Supernova Remnant Evolution in Wind Bubbles: A Closer Look at Kes 27

    Full text link
    Massive Stars (> 8 solar masses) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by Chen et al (2008) to be evolving in a wind-blown bubble, explore its properties, and investigate whether the properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support this conclusion, due to the fact that the reflected shock is expanding into much lower densities.Comment: 5 pages, 3 figures. Revised version submitted to High Energy Density Physics. To be published in a special issue of the proceedings of the 2012 HEDLA conferenc
    • 

    corecore