14,081 research outputs found

    Lepton masses and mixings in orbifold models with three Higgs families

    Get PDF
    We analyse the phenomenological viability of heterotic Z(3) orbifolds with two Wilson lines, which naturally predict three supersymmetric families of matter and Higgs fields. Given that these models can accommodate realistic scenarios for the quark sector avoiding potentially dangerous flavour-changing neutral currents, we now address the leptonic sector, finding that viable orbifold configurations can in principle be obtained. In particular,it is possible to accomodate present data on charged lepton masses, while avoiding conflict with lepton flavour-violating decays. Concerning the generation of neutrino masses and mixings, we find that Z(3) orbifolds offer several interesting possibilities.Comment: 28 pages, 11 figures. References adde

    Irreversible processes and the accelerated-decelerated phases of the Universe

    Full text link
    A model for the Universe is proposed where it is considered as a mixture of scalar and matter fields. The particle production is due to an irreversible transfer of energy from the gravitational field to the matter field and represented by a non-equilibrium pressure. This model can simulate three distinct periods of the Universe: (a) an accelerated epoch where the energy density of the scalar field prevails over the matter field, (b) a past decelerated period where the energy density of the matter field becomes more predominant than the scalar energy density, and (c) a present acceleration phase where the scalar energy density overcomes the energy density of the matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic

    Melhoramento genetico de gado de leite: seleção de vacas e touros.

    Get PDF
    bitstream/item/103183/1/CT-43-Melhoram-gen-gado-de-leite.pd

    The ionizing sources of luminous compact HII regions in the RCW106 and RCW122 clouds

    Full text link
    Given the rarity of young O star candidates, compact HII regions embedded in dense molecular cores continue to serve as potential sites to peer into the details of high-mass star formation. To uncover the ionizing sources of the most luminous and compact HII regions embedded in the RCW106 and RCW122 giant molecular clouds, known to be relatively nearby (2-4 kpc) and isolated, thus providing an opportunity to examine spatial scales of a few hundred to a thousand AU in size. High spatial resolution (0.3"), mid-infrared spectra (R=350), including the fine structure lines [ArIII] and [NeII], were obtained for four luminous compact HII regions, embedded inside the dense cores within the RCW106 and RCW122 molecular cloud complexes. At this resolution, these targets reveal point-like sources surrounded by nebulosity of different morphologies, uncovering details at spatial dimensions of <1000AU. The point-like sources display [ArIII] and [NeII] lines - the ratios of which are used to estimate the temperature of the embedded sources. The derived temperatures are indicative of mid-late O type objects for all the sources with [ArIII] emission. Previously known characteristics of these targets from the literature, including evidence of disk or accretion suggest that the identified sources may grow more to become early-type O stars by the end of the star formation process

    FCNCs in supersymmetric multi-Higgs doublet models

    Full text link
    We conduct a general discussion of supersymmetric models with three families in the Higgs sector. We analyse the scalar potential, and investigate the minima conditions, deriving the mass matrices for the scalar, pseudoscalar and charged states. Depending on the Yukawa couplings and the Higgs spectrum, the model might allow the occurrence of potentially dangerous flavour changing neutral currents at the tree-level. We compute model-independent contributions for several observables, and as an example we apply this general analysis to a specific model of quark-Higgs interactions, discussing how compatibility with current experimental data constrains the Higgs sector.Comment: 30 pages, 9 figures. Comments and references added. Final version published in Physical Review

    Vaccines in Congenital Toxoplasmosis: Advances and Perspectives

    Get PDF
    Congenital toxoplasmosis has a high impact on human disease worldwide, inducing serious consequences from fetus to adulthood. Despite this, there are currently no human vaccines available to prevent this infection. Most vaccination studies against Toxoplasma gondii infection used animal models in which the infection was established by exogenous inoculation. Here, we review recent research on potential T. gondii vaccines using animal models in which infection was congenitally established. Endeavors in this field have so far revealed that live or subunit vaccines previously found to confer protection against extrinsically established infections can also protect, at least partially, from vertically transmitted infection. Nevertheless, there is no consensus on the more adequate immune response to protect the host and the fetus in congenital infection. Most of the vaccination studies rely on the assessment of maternal systemic immune responses, quantification of parasitic loads in the fetuses, and survival indexes and/or brain parasitic burden in the neonates. More research must be carried out not only to explore new vaccines but also to further study the nature of the elicited immune protection at the maternal-fetal interface. Particularly, the cellular and molecular effector mechanisms at the maternal-fetal interface induced by immunization remain poorly characterized. Deeper knowledge on the immune response at this specific location will certainly help to refine the vaccine-induced immunity and, consequently, to provide the most effective and safest protection against T. gondii vertical infection.This work was supported by the Applied Molecular Biosciences Unit-UCIBIO, which is financed by national funds from FCT (UIDP/04378/2020 and UIDB/04378/2020). AC was supported by FCT Individual CEEC 2017 Assistant Researcher Grant 352 CEECIND/01514/2017

    Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

    Get PDF
    The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution function. The damping rate, frequency, and eigenmode spectrum of electron-plasma waves are found as functions of the collision frequency and wavelength. A comparison is made between the collisionless Landau damping limit, the Lenard-Bernstein and Dougherty collision operators, and the electron-ion collision operator, finding large deviations in the damping rates and eigenmode spectra. A purely damped entropy mode, characteristic of a plasma where pitch-angle scattering effects are dominant with respect to collisionless effects, is shown to emerge numerically, and its dispersion relation is analytically derived. It is shown that such a mode is absent when simplified collision operators are used, and that like-particle collisions strongly influence the damping rate of the entropy mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma Physic

    Desenvolvimento de tecnologias para a melhoria do sistema de criação em cativeiro do pirarucu, Arapaima gigas.

    Get PDF
    bitstream/item/86403/1/Digitalizar0144.pd
    corecore