1,337 research outputs found

    Community sport development events, social capital and social mobility: A case study of Premier League Kicks and young Black and minoritised ethnic males in England

    Get PDF
    This paper examines the effectiveness of ‘Premier League Kicks’ – a football community outreach initiative - to produce and leverage social capital among young Black and minoritised ethnic males in England. The paper draws upon semi-structured interviews with Kicks participants and community coaches to analyse the social capital created through participation in the programme, in addition to constraints faced by participants in utilising and leveraging their accumulated social capital to obtain a professional football career. Drawing upon Putnam’s conceptualisation of bonding and bridging social capital and the associated concepts of linking and sporting capital, the analysis concludes that Premier League Kicks was effective for building bonding social capital, which can lead to greater individual empowerment and self-belief. However, opportunities for leveraging such capital for personal reward was limited to horizontal networks/mobility and subsequently, converting this capital into other forms, such as bridging, linking and sporting capital was highly regulated and exclusionary

    Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships

    Get PDF
    Aim A major challenge for invasion ecology is to identify high-impact invaders to guide prioritization of management interventions. We argue that species with the potential to cause regime shifts (altered states of ecosystem structure and function that are difficult or impossible to reverse) should be prioritized. These are species that modify ecosystems in ways that enhance their own persistence and suppress that of native species through reinforcing feedback processes. Methods Using both systems analysis and meta-analysis approaches, we synthesized changes to ecosystems caused by 173 invasive plant species. For the systems analysis, we examined published studies of impacts of invasive plants to determine which presented evidence consistent with a reinforcement of feedback processes. For the meta-analysis, we calculated the effect size ratio between standardized changes in recipient ecosystem and in the status of introduced species as an indication of a reinforcing feedback in particular species environment combinations. The systems analysis approach allowed us to conceptualize regime shifts in invader-dominated landscapes and to estimate the likelihood of such changes occurring. The meta-analysis allowed us to quantitatively verify the conceptual model and the key invader-context feedbacks and to detect the strength and direction of feedbacks. Results Most reinforcing feedbacks involve impacts on soil-nutrient cycling by shrub and tree invaders in forests and herbaceous invaders in wetlands. Feedbacks resulting in regime shifts were most likely related to processes associated with seed banks, fire and nutrient cycling. Results were used to derive a key for identifying high-impact invaders. Main conclusions Identifying combinations of plant life-forms and ecosystems most likely to result in regime shifts is a robust approach for predicting high-impact invasions and therefore for prioritizing management interventions. The meta-analysis revealed the need for more quantitative studies, including manipulative experiments, on ecosystem feedbacks

    Personal experience with the procurement of 132 liver allografts

    Get PDF
    A single donor surgeon's experience procuring the livers from 132 donors is described. Thirty-seven grafts (28.9%) had hepatic arterial anomalies, 19 (14.4%) of which required arterial reconstruction prior to transplantation. Of the 121 grafts evaluated for early function, 103 grafts (85.2%) functioned well, whereas 14 grafts (11.6%) functioned poorly and 4 grafts (3.3%) failed to function at all. The variables associated with less than optimal function of the graft consisted of donor age (P<0.05), duration of donor's stay in the intensive care unit (P<0.005), abnormal graft appearance (P<0.05), and such recipient problems as vascular thromboses during or immediately following transplantation (P<0.005). A new preservation fluid, University of Wisconsin solution, allowed safe and longer cold storage of the liver allograft than did Euro-Collins' solution (P<0.0001). A parameter of liver allograft viability, which is simple and predictive of allograft function prior to the actual transplant procedure, is urgently needed. © 1989 Springer-Verlag

    Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    Get PDF
    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    Quantum fluctuations can promote or inhibit glass formation

    Full text link
    The very nature of glass is somewhat mysterious: while relaxation times in glasses are of sufficient magnitude that large-scale motion on the atomic level is essentially as slow as it is in the crystalline state, the structure of glass appears barely different than that of the liquid that produced it. Quantum mechanical systems ranging from electron liquids to superfluid helium appear to form glasses, but as yet no unifying framework exists connecting classical and quantum regimes of vitrification. Here we develop new insights from theory and simulation into the quantum glass transition that surprisingly reveal distinct regions where quantum fluctuations can either promote or inhibit glass formation.Comment: Accepted for publication in Nature Physics. 22 pages, 3 figures, 1 Tabl
    • 

    corecore