573 research outputs found

    Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes

    Get PDF
    The incorporation of transition metals (TMs) such as Co, Fe, and Mn into SnO2 substantially improves the reversibility of the conversion and the alloying reaction when used as a negative electrode active material in lithium-ion batteries. Moreover, it was shown that the specific benefits of different TM dopants can be combined when introducing more than one dopant into the SnO2 lattice. Herein, a careful characterization of Co and Mn co-doped SnO2 via transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction including Rietveld refinement is reported. Based on this in-depth investigation of the crystal structure and the distribution of the two TM dopants within the lattice, an ex situ X-ray photoelectron spectroscopy and ex situ X-ray absorption spectroscopy were performed to better understand the de-/lithiation mechanism and the synergistic impact of the Co and Mn co-doping. The results specifically suggest that the antithetical redox behaviour of the two dopants might play a decisive role for the enhanced reversibility of the de-/lithiation reaction

    On Inflation with Non-minimal Coupling

    Full text link
    A simple realization of inflation consists of adding the following operators to the Einstein-Hilbert action: (partial phi)^2, lambda phi^4, and xi phi^2 R, with xi a large non-minimal coupling. Recently there has been much discussion as to whether such theories make sense quantum mechanically and if the inflaton phi can also be the Standard Model Higgs. In this note we answer these questions. Firstly, for a single scalar phi, we show that the quantum field theory is well behaved in the pure gravity and kinetic sectors, since the quantum generated corrections are small. However, the theory likely breaks down at ~ m_pl / xi due to scattering provided by the self-interacting potential lambda phi^4. Secondly, we show that the theory changes for multiple scalars phi with non-minimal coupling xi phi dot phi R, since this introduces qualitatively new interactions which manifestly generate large quantum corrections even in the gravity and kinetic sectors, spoiling the theory for energies > m_pl / xi. Since the Higgs doublet of the Standard Model includes the Higgs boson and 3 Goldstone bosons, it falls into the latter category and therefore its validity is manifestly spoiled. We show that these conclusions hold in both the Jordan and Einstein frames and describe an intuitive analogy in the form of the pion Lagrangian. We also examine the recent claim that curvature-squared inflation models fail quantum mechanically. Our work appears to go beyond the recent discussions.Comment: 14 pages, 2 figures. Version 2: Clarified findings and improved wording. Elaborated important sections and removed an unnecessary section. Added references. Version 3: Updated towards JHEP version. Version 4: Final JHEP versio

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (β€˜random’), connection length preserving (β€˜spatial’), and connection length optimised (β€˜reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain

    Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)

    Get PDF
    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Interpersonal and affective dimensions of psychopathic traits in adolescents : development and validation of a self-report instrument

    Get PDF
    We report the development and psychometric evaluations of a self-report instrument designed to screen for psychopathic traits among mainstream community adolescents. Tests of item functioning were initially conducted with 26 adolescents. In a second study the new instrument was administered to 150 high school adolescents, 73 of who had school records of suspension for antisocial behavior. Exploratory factor analysis yielded a 4-factor structure (Impulsivity Ξ± = .73, Self-Centredness Ξ± = .70, Callous-Unemotional Ξ± = .69, and Manipulativeness Ξ± = .83). In a third study involving 328 high school adolescents, 130 with records of suspension for antisocial behaviour, competing measurement models were evaluated using confirmatory factor analysis. The superiority of a first-order model represented by four correlated factors that was invariant across gender and age was confirmed. The findings provide researchers and clinicians with a psychometrically strong, self-report instrument and a greater understanding of psychopathic traits in mainstream adolescents

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Assessing the Short-Term Effects of Heatwaves on Mortality and Morbidity in Brisbane, Australia: Comparison of Case-Crossover and Time Series Analyses

    Get PDF
    BACKGROUND: Heat-related impacts may have greater public health implications as climate change continues. It is important to appropriately characterize the relationship between heatwave and health outcomes. However, it is unclear whether a case-crossover design can be effectively used to assess the event- or episode-related health effects. This study examined the association between exposure to heatwaves and mortality and emergency hospital admissions (EHAs) from non-external causes in Brisbane, Australia, using both case-crossover and time series analyses approaches. METHODS: Poisson generalised additive model (GAM) and time-stratified case-crossover analyses were used to assess the short-term impact of heatwaves on mortality and EHAs. Heatwaves exhibited a significant impact on mortality and EHAs after adjusting for air pollution, day of the week, and season. RESULTS: For time-stratified case-crossover analysis, odds ratios of mortality and EHAs during heatwaves were 1.62 (95% confidence interval (CI): 1.36-1.94) and 1.22 (95% CI: 1.14-1.30) at lag 1, respectively. Time series GAM models gave similar results. Relative risks of mortality and EHAs ranged from 1.72 (95% CI: 1.40-2.11) to 1.81 (95% CI: 1.56-2.10) and from 1.14 (95% CI: 1.06-1.23) to 1.28 (95% CI: 1.21-1.36) at lag 1, respectively. The risk estimates gradually attenuated after the lag of one day for both case-crossover and time series analyses. CONCLUSIONS: The risk estimates from both case-crossover and time series models were consistent and comparable. This finding may have implications for future research on the assessment of event- or episode-related (e.g., heatwave) health effects
    • …
    corecore