9 research outputs found

    Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice

    Get PDF
    Iodine and bromine species participate in key atmospheric reactions including the formation of cloud con- densation nuclei and ozone depletion. We present a novel method coupling a high-performance liquid chromatogra- phy with ion chromatography and inductively coupled plas- ma mass spectrometry, which allows the determination of iodine (I) and bromine (Br) species (IO3−, I−, Br−, BrO3−) at the picogram-per-gram levels presents in Antarctic ice. Chromatographic separation was achieved using an ION- PAC® AS16 Analytical Column with NaOH as eluent. Detection limits for I and Br species were 5 to 9 pg g−1 with an uncertainty of less than 2.5% for all considered species. Inorganic iodine and bromine species have been determined in Antarctic ice core samples, with concentrations close to the detection limits for iodine species, and approximately 150 pg g−1 for Br−. Although iodate (IO3−) is the most abundant iodine species in the atmosphere, only the much rarer iodide (I−) species was present in Antarctic Holocene ice. Bromine was found to be present in Antarctic ice as Br−

    Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS

    Get PDF
    Isotope dilution is a useful technique to measure the labile metal pool, which is the amount of metal in soil in rapid equilibrium (<7 days) with the soil solution. This is normally performed by equilibrating soil with a metal isotope, and sampling the labile metal pool by using an extraction (E value), or by growing plants (L value). For Cu, this procedure is problematic for E values, and impossible for L values, due to the short half-life of the 64Cu radioisotope (12.4 h), which makes access and handling very difficult. We therefore developed a technique using enriched 65Cu stable isotope and measurement of 63Cu/65Cu ratios by quadrupole inductively coupled plasma mass spectrometry (ICP-MS) to measure labile pools of Cu in soils using E value techniques. Mass spectral interferences in detection of 63Cu/65Cu ratios in soil extracts were found to be minimal. Isotope ratios determined by quadrupole ICP-MS compared well to those determined by high-resolution (magnetic sector) ICP-MS. E values determined using the stable isotope technique compared well to those determined using the radioisotope for both uncontaminated and Cu-contaminated soils.Annette L. Nolan, Yibing Ma, Enzo Lombi and Mike J. McLaughli
    corecore