Measurement of Labile Cu in Soil Using Stable Isotope Dilution and Isotope Ratio Analysis by ICP-MS

Annette L. Nolan^{1,2}, Yibing Ma¹, Enzo Lombi¹, Mike J. McLaughlin^{1,3}

INTRODUCTION

Isotope dilution is a useful technique to measure the labile metal pool, which is the amount of metal in soil in rapid equilibrium with the soil solution. This is normally performed by equilibrating soil with a metal isotope, and sampling the labile metal pool using an extraction (E value), or by growing plants (L value). For Cu, this procedure is problematic for E values, and impossible for L values, owing to the short half-life of the ⁶⁴Cu radioisotope (12.4 h), which makes access and handling very difficult. We therefore developed an E value technique using enriched ⁶⁵Cu stable isotope and measurement of ⁶³Cu/⁶⁵Cu ratios by inductively-coupled plasma mass spectrometry (ICP-MS) to measure labile pools of Cu in soils [1]. The ⁶⁵Cu E values were compared to those determined using radioactive ⁶⁴Cu.

METHODS

E values Determined Using Radioactive 64Cu

Sub-samples (2 g) of 12 soils were placed in centrifuge tubes to which was added 20 mL of water plus 2 drops of toluene in order to minimise microbial activity. The soil suspensions were equilibrated for 24 h in an end-over-end shaker. The samples were spiked with 50 μL of solution containing ⁶⁴Cu (60 MBq mL⁻¹) and returned to the shaker to equilibrate for 24 h. At the end of the equilibration period the samples were centrifuged at 3000 g for 20 min and filtered through 0.2 μm filters. Unlabelled Cu in the filtrates was measured using ICP-optical emission spectroscopy (ICP-OES, Spectro, SpectroFlame Modula). Activities of radioactive Cu in the filtrates were assessed using gamma spectrometry (1480 Wizard, Wallac). The labile Cu pool (*E*) was determined using equation 1:

$$E = \frac{C_{sol}}{C *_{sol}} \times R \times \frac{V}{W} \tag{1}$$

where C_{sol} is the concentration of natural metal in solution ($\mu g/mL$), C^*_{sol} is the concentration of radioisotope remaining in solution after equilibration (Bq/mL), R is the total concentration of radioisotope added to each sample (Bq/mL) and V/W is the ratio of solution to soil sample.

E values Determined Using Stable 65 Cu

The technique described above for ⁶⁴Cu was used, with the following modifications. The soil suspensions were spiked with a small volume of solution containing enriched ⁶⁵Cu equivalent to either 0.25 or 4 mg Cu applied per kg soil. This was equivalent to approximately 1% of total Cu in soil. Copper isotope ratio (⁶³Cu/⁶⁵Cu) measurements were conducted using an Agilent 7500c ICP-MS (Agilent Technologies) without any collision cell gas. The labile Cu pool (*E*) was determined using equation 2:

¹Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2 Glen Osmond, SA 5064, AUSTRALIA

²Current address: National Measurement Institute, PO Box 385, Pymble, NSW 2073, AUSTRALIA (annette.nolan@measurement.gov.au)

³ Soil and Land Systems, School of Earth and Environmental Sciences, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, AUSTRALIA

$$E = R \times \frac{AW(Cu_{nat})}{AW(^{65}Cu)} \times \frac{IR_{sp} - IR_{meas}}{IR_{meas} - IR_{nat}} \times (IR_{nat} + 1)$$
(2)

where R is equal to the total concentration of 65 Cu in the spike (mg kg⁻¹), AW is atomic weight, IR_{sp} is the Cu ratio in the 65 Cu spike solution, IR_{meas} is the measured Cu ratio in solution after spiking and IR_{nat} is the measured natural abundance Cu ratio.

RESULTS AND DISCUSSION

Mass spectral interferences in detection of ⁶³Cu/⁶⁵Cu ratios by ICP-MS in soil extracts were found to be minimal. Isotope ratios determined by quadrupole ICP-MS compared well to those determined by high-resolution (magnetic sector) ICP-MS. *E* values determined using the stable isotope technique compared well to those determined using the radioisotope for both uncontaminated and Cu-contaminated soils (Fig. 1).

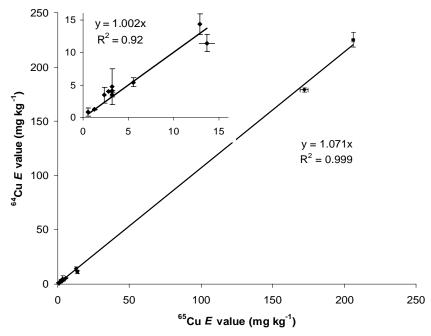


Fig. 1. ⁶⁵Cu E values versus ⁶⁴Cu E values for 12 soils.

CONCLUSIONS

This study shows that stable Cu isotope dilution can be used to determine the labile Cu pool in soils using isotope ratio measurements by quadrupole ICP-MS in the standard configuration. Good agreement was obtained between the measurements of labile Cu in soil using both stable and radioactive Cu isotope dilution, mutually confirming the two techniques. Isotope dilution techniques have been widely applied in the study of the fate and mobility of trace elements in soil, and the developed technique for Cu provides the potential for widespread application in trace element environmental soil research.

ACKNOWLEDGEMENTS

The authors thank the International Copper Association for supporting part of this work.

REFERENCES

[1] Nolan, A.L, Ma, Y., Lombi, E. and McLaughlin, M.J. (In press) Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS. *Anal. Bioanal. Chem.*