67 research outputs found

    Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation

    Get PDF
    Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence.IMPORTANCE GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted

    Paracheck-Pf® accuracy and recently treated Plasmodium falciparum infections: is there a risk of over-diagnosis?

    Get PDF
    BACKGROUND: An assessment of the accuracy of Paracheck Pf, a malaria rapid diagnostic test (RDT) detecting histidine rich protein 2 was undertaken amongst children aged 6-59 months in eastern Democratic Republic of Congo. METHODS: This RDT assessment occurred in conjunction with an ACT efficacy trial. Febrile children were simultaneously screened with both RDT and high quality microscopy and those meeting inclusion criteria were followed for 35 days. RESULTS: 358 febrile children were screened with 180 children recruited for five weeks follow-up. On screening, the RDT accurately diagnosed all 235 true malaria cases, indicating 100% RDT sensitivity. Of the 123 negative slides, the RDT gave 59 false-positive results, indicating 52.0% (64/123) RDT specificity. During follow-up after treatment with an artemisinin-based combination therapy, 98.2% (110/112), 94.6% (106/112), 92.0% (103/112) and 73.5% (50/68) of effectively treated children were still false-positive by RDT at days 14, 21, 28 and 35, respectively. CONCLUSION: Results show that though the use of Paracheck-Pf is as sensitive as microscopy in detecting true malaria cases, a low specificity did present a high frequency of false-positive RDT results. What's more, a duration of RDT false-positivity was found that significantly surpassed the 'fortnight' after effective treatment reported by its manufacturer. Though further research is needed in assessing RDT accuracy, study results showing the presence of frequent false positivity should be taken into consideration to avoid clinicians inappropriately focusing on malaria, not identifying the true cause of illness, and providing unnecessary treatment

    Evaluation of Pneumococcal Serotyping of Nasopharyngeal-Carriage Isolates by Latex Agglutination, Whole-Genome Sequencing (PneumoCaT), and DNA Microarray in a High-Pneumococcal-Carriage-Prevalence Population in Malawi.

    Get PDF
    Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for evaluating and formulating pneumococcal vaccines and for informing vaccine policy. For this reason, we evaluated the concordance between pneumococcal serotyping results by latex agglutination, whole-genome sequencing (WGS) with PneumoCaT, and DNA microarray for samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected according to WHO recommendations between 2015 and 2017 by using stratified random sampling among study populations. Participants included healthy children 3 to 6 years old (vaccinated with the 13-valent pneumococcal conjugate vaccine [PCV13] as part of the Expanded Program on Immunization [EPI]), healthy children 5 to 10 years old (age-ineligible for PCV13), and HIV-infected adults (18 to 40 years old) on antiretroviral therapy (ART). For phenotypic serotyping, we used a 13-valent latex kit (Statens Serum Institut [SSI], Denmark). For genomic serotyping, we applied the PneumoCaT pipeline to whole-genome sequence libraries. For molecular serotyping by microarray, we used the BUGS Bioscience Senti-SP microarray. A total of 1,347 samples were analyzed. Concordance was 90.7% (95% confidence interval [CI], 89.0 to 92.2%) between latex agglutination and PneumoCaT, 95.2% (95% CI, 93.9 to 96.3%) between latex agglutination and the microarray, and 96.6% (95% CI, 95.5 to 97.5%) between the microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococci carried at low relative abundances (median, 8%), the microarray increased VT detection by 31.5% over that by latex serotyping. To conclude, all three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine serotypes and requires the least expertise and resources for field implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories for investigating the importance of vaccine serotypes at low relative abundances in transmission and disease

    Evaluation of pneumococcal serotyping in nasopharyngeal carriage isolates by latex agglutination, whole genome sequencing (PneumoCaT) and DNA microarray in a high pneumococcal carriage prevalence population in Malawi

    Get PDF
    BACKGROUND: Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for the evaluation and formulation of pneumococcal vaccines and informing vaccine policy. METHODS: We evaluated pneumococcal serotyping concordance between latex agglutination, PneumoCaT by whole genome sequencing (WGS) and DNA microarray using samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected, following WHO recommendations, between 2015 and 2017, using stratified random sampling among study populations. Participants included healthy children 3–6 years old (PCV13 vaccinated as part of EPI), healthy children 5–10 years (age-ineligible for PCV13), and HIV-infected adults (18–40yrs) on ART. For phenotypic serotyping we used a 13-valent latex kit (SSI, Denmark). For genomic serotyping we applied PneumoCaT pipeline to whole genome sequence libraries. For molecular serotyping by microarray we used the BUGS Bioscience Senti-SP microarray. RESULTS: 1347 samples were analysed. Concordance was 90.7% (95% CI: 89.0–92.2) between latex and PneumoCaT; 95.2% (93.9–96.3) between latex and microarray; and 96.6% (95.5–97.5) between microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococcus carried at low relative abundance (median 8%), microarray increased VT detection by 31.5% compared to latex serotyping. CONCLUSION: All three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine-serotypes and requires the least expertise and resources for field-implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories while investigating the importance of VT in low relative abundance in transmission and disease

    Hepatitis B vaccination impact and the unmet need for antiviral treatment in Blantyre, Malawi

    Get PDF
    BACKGROUND: Hepatitis B is the leading cause of cirrhosis and liver cancer in sub-Saharan Africa. To reduce hepatitis-associated mortality, antiviral treatment programmes are needed. We estimated prevalence, vaccine impact and need for antiviral treatment in Blantyre, Malawi to inform an effective public health response. METHODS: We conducted a household study in Blantyre in 2016-2018. We selected individuals from a census using random sampling and estimated age-sex-standardised HBsAg seroprevalence. Impact of infant hepatitis B vaccination, which began in 2002, was estimated by binomial log-linear regression comparing individuals born before and after vaccine implementation. In HBsAg-positive adults, eligibility for antiviral therapy was assessed. RESULTS: Of 97,386 censused individuals, 6,073 (median age 18 years; 56.7% female) were sampled. HBsAg seroprevalence was 5.1% (95% CI 4.3-6.1) among adults and 0.3% (0.1-0.6) among children born after vaccine introduction. Estimated vaccine impact was 95.8% (70.3-99.4). Of HBsAg-positive adults, 26% were HIV-positive. Among HIV-negative individuals, 3%, 6% and 9% were eligible for hepatitis B treatment by WHO, European and American hepatology association criteria, respectively. CONCLUSIONS: Infant HBV vaccination has been highly effective in reducing HBsAg prevalence in urban Malawi. Up to 9% of HBsAg-positive HIV-negative adults are eligible, but have an unmet need, for antiviral therapy

    A pragmatic health centre-based evaluation comparing the effectiveness of a PCV13 schedule change from 3+0 to 2+1 in a high pneumococcal carriage and disease burden setting in Malawi: a study protocol

    Get PDF
    INTRODUCTION: Streptococcus pneumoniae (the pneumococcus) is commonly carried as a commensal bacterium in the nasopharynx but can cause life-threatening disease. Transmission occurs by human respiratory droplets and interruption of this process provides herd immunity. A 2017 WHO Consultation on Optimisation of pneumococcal conjugate vaccines (PCV) Impact highlighted a substantial research gap in investigating why the impact of PCV vaccines in low-income countries has been lower than expected. Malawi introduced the 13-valent PCV (PCV13) into the national Expanded Programme of Immunisations in 2011, using a 3+0 (3 primary +0 booster doses) schedule. With evidence of greater impact of a 2+1 (2 primary +1 booster dose) schedule in other settings, including South Africa, Malawi's National Immunisations Technical Advisory Group is seeking evidence of adequate superiority of a 2+1 schedule to inform vaccine policy. METHODS: A pragmatic health centre-based evaluation comparing impact of a PCV13 schedule change from 3+0 to 2+1 in Blantyre district, Malawi. Twenty government health centres will be randomly selected, with ten implementing a 2+1 and 10 to continue with the 3+0 schedule. Health centres implementing 3+0 will serve as the direct comparator in evaluating 2+1 providing superior direct and indirect protection against pneumococcal carriage. Pneumococcal carriage surveys will evaluate carriage prevalence among children 15-24 months, randomised at household level, and schoolgoers 5-10 years of age, randomly selected from school registers. Carriage surveys will be conducted 18 and 33 months following 2+1 implementation. ANALYSIS: The primary endpoint is powered to detect an effect size of 50% reduction in vaccine serotype (VT) carriage among vaccinated children 15-24 months old, expecting a 14% and 7% VT carriage prevalence in the 3+0 and 2+1 arms, respectively. ETHICS AND DISSEMINATION: The study has been approved by the Malawi College of Medicine Research Ethics Committee (COMREC; Ref: P05.19.2680), the University College London Research Ethics Committee (Ref: 8603.002) and the University of Liverpool Research Ethics Committee (Ref: 5439). The results from this study will be actively disseminated through manuscript publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04078997

    Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.

    Get PDF
    BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs

    Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and practical malaria diagnostics, such as immunochromatographic rapid diagnostic tests (RDTs), have the potential to avert unnecessary treatments and save lives. Volunteer community health workers (CHWs) represent a potentially valuable human resource for expanding this technology to where it is most needed, remote rural communities in sub-Saharan Africa with limited health facilities and personnel. This study reports on a training programme for CHWs to incorporate RDTs into their management strategy for febrile children in the Democratic Republic of Congo, a tropical African setting ravaged by human conflict.</p> <p>Methods</p> <p>Prospective cohort study, satisfaction questionnaire and decision analysis.</p> <p>Results</p> <p>Twelve CHWs were trained to safely and accurately perform and interpret RDTs, then successfully implemented rapid diagnostic testing in their remote community in a cohort of 357 febrile children. CHWs were uniformly positive in evaluating RDTs for their utility and ease of use. However, high malaria prevalence in this cohort (93% by RDTs, 88% by light microscopy) limited the cost-effectiveness of RDTs compared to presumptive treatment of all febrile children, as evidenced by findings from a simplified decision analysis.</p> <p>Conclusions</p> <p>CHWs can safely and effectively use RDTs in their management of febrile children; however, cost-effectiveness of RDTs is limited in zones of high malaria prevalence.</p

    Determinants of the accuracy of rapid diagnostic tests in malaria case management: evidence from low and moderate transmission settings in the East African highlands

    Get PDF
    BACKGROUND: The accuracy of malaria diagnosis has received renewed interest in recent years due to changes in treatment policies in favour of relatively high-cost artemisinin-based combination therapies. The use of rapid diagnostic tests (RDTs) based on histidine-rich protein 2 (HRP2) synthesized by Plasmodium falciparum has been widely advocated to save costs and to minimize inappropriate treatment of non-malarial febrile illnesses. HRP2-based RDTs are highly sensitive and stable; however, their specificity is a cause for concern, particularly in areas of intense malaria transmission due to persistence of HRP2 antigens from previous infections. METHODS: In this study, 78,454 clinically diagnosed malaria patients were tested using HRP2-based RDTs over a period of approximately four years in four highland sites in Kenya and Uganda representing hypoendemic to mesoendemic settings. In addition, the utility of the tests was evaluated in comparison with expert microscopy for disease management in 2,241 subjects in two sites with different endemicity levels over four months. RESULTS: RDT positivity rates varied by season and year, indicating temporal changes in accuracy of clinical diagnosis. Compared to expert microscopy, the sensitivity, specificity, positive predictive value and negative predictive value of the RDTs in a hypoendemic site were 90.0%, 99.9%, 90.0% and 99.9%, respectively. Corresponding measures at a mesoendemic site were 91.0%, 65.0%, 71.6% and 88.1%. Although sensitivities at the two sites were broadly comparable, levels of specificity varied considerably between the sites as well as according to month of test, age of patient, and presence or absence of fever during consultation. Specificity was relatively high in older age groups and increased towards the end of the transmission season, indicating the role played by anti-HRP2 antibodies. Patients with high parasite densities were more likely to test positive with RDTs than those with low density infections. CONCLUSION: RDTs may be effective when used in low endemicity situations, but high false positive error rates may occur in areas with moderately high transmission. Reports on specificity of RDTs and cost-effectiveness analyses on their use should be interpreted with caution as there may be wide variations in these measurements depending upon endemicity, season and the age group of patients studied
    • …
    corecore