6 research outputs found

    A systematic review of the effects of residency training on patient outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Residents are vital to the clinical workforce of today and tomorrow. Although in training to become specialists, they also provide much of the daily patient care. Residency training aims to prepare residents to provide a high quality of care. It is essential to assess the patient outcome aspects of residency training, to evaluate the effect or impact of global investments made in training programs. Therefore, we conducted a systematic review to evaluate the effects of relevant aspects of residency training on patient outcomes.</p> <p>Methods</p> <p>The literature was searched from December 2004 to February 2011 using MEDLINE, Cochrane, Embase and the Education Resources Information Center databases with terms related to residency training and (post) graduate medical education and patient outcomes, including mortality, morbidity, complications, length of stay and patient satisfaction. Included studies evaluated the impact of residency training on patient outcomes.</p> <p>Results</p> <p>Ninety-seven articles were included from 182 full-text articles of the initial 2,001 hits. All studies were of average or good quality and the majority had an observational study design.Ninety-six studies provided insight into the effect of 'the level of experience of residents' on patient outcomes during residency training. Within these studies, the start of the academic year was not without risk (five out of 19 studies), but individual progression of residents (seven studies) as well as progression through residency training (nine out of 10 studies) had a positive effect on patient outcomes. Compared with faculty, residents' care resulted mostly in similar patient outcomes when dedicated supervision and additional operation time were arranged for (34 out of 43 studies). After new, modified or improved training programs, patient outcomes remained unchanged or improved (16 out of 17 studies). Only one study focused on physicians' prior training site when assessing the quality of patient care. In this study, training programs were ranked by complication rates of their graduates, thus linking patient outcomes back to where physicians were trained.</p> <p>Conclusions</p> <p>The majority of studies included in this systematic review drew attention to the fact that patient care appears safe and of equal quality when delivered by residents. A minority of results pointed to some negative patient outcomes from the involvement of residents. Adequate supervision, room for extra operation time, and evaluation of and attention to the individual competence of residents throughout residency training could positively serve patient outcomes. Limited evidence is available on the effect of residency training on later practice. Both qualitative and quantitative research designs are needed to clarify which aspects of residency training best prepare doctors to deliver high quality care.</p

    Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53

    No full text
    The scaffolding protein insulin receptor tyrosine kinase substrate p53 (IRSp53), a ubiquitous regulator of the actin cytoskeleton, mediates filopodia formation under the control of Rho-family GTPases. IRSp53 comprises a central SH3 domain, which binds to proline-rich regions of a wide range of actin regulators, and a conserved N-terminal IRSp53/MIM homology domain (IMD) that harbours F-actin-bundling activity. Here, we present the crystal structure of this novel actin-bundling domain revealing a coiled-coil domain that self-associates into a 180 Å-long zeppelin-shaped dimer. Sedimentation velocity experiments confirm the presence of a single molecular species of twice the molecular weight of the monomer in solution. Mutagenesis of conserved basic residues at the extreme ends of the dimer abrogated actin bundling in vitro and filopodia formation in vivo, demonstrating that IMD-mediated actin bundling is required for IRSp53-induced filopodia formation. This study promotes an expanded view of IRSp53 as an actin regulator that integrates scaffolding and effector functions

    Femtosecond X-ray protein nanocrystallography

    No full text
    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1, 2, 3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage

    Femtosecond X-ray protein nanocrystallography

    No full text
    corecore