53 research outputs found

    Dental practice satisfaction with preferred provider organizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite their increasing share of the dental insurance market, little is known about dental practices' satisfaction with preferred provider organizations (PPOs). This analysis examined practice satisfaction with dental PPOs and the extent to which satisfaction was a function of communications from the plan, claims handling and compensation.</p> <p>Methods</p> <p>Data were collected through telephone surveys with dental practices affiliated with MetLife between January 2002 and December 2004. Each respondent was asked a series of questions related to their satisfaction with a systematically selected PPO with which they were affiliated. Six different PPO plans had sufficient observations to allow for comparative analysis (total n = 4582). Multiple imputation procedures were used to adjust for item non-response.</p> <p>Results</p> <p>While the average level of overall satisfaction with the target plan fell between "very satisfied" and "satisfied," regression models revealed substantial differences in overall satisfaction across the 6 PPOs (p < .05). Statistically significant differences between plans in overall satisfaction were largely explained by differences in the perceived adequacy of compensation. However, differences in overall satisfaction involving two of the PPOs were also driven by satisfaction with claims handling.</p> <p>Conclusion</p> <p>Results demonstrate the importance of compensation to dental practice satisfaction with PPOs. However, these results also highlight the critical role of service-related factors in differentiating plans and suggest that there are important non-monetary dimensions of PPO performance that can be used to recruit and retain practices.</p

    Stimulation of Midbrain Dopaminergic Structures Modifies Firing Rates of Rat Lateral Habenula Neurons

    Get PDF
    Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 µA, 0.5 Hz) or tetanic stimulation (80 µA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ∼90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    The role of morphine in regulation of cancer cell growth

    Get PDF
    Morphine is considered the “gold standard” for relieving pain and is currently one of the most effective drugs available clinically for the management of severe pain associated with cancer. In addition to its use in the treatment of pain, morphine appears to be important in the regulation of neoplastic tissue. Although morphine acts directly on the central nervous system to relieve pain, its activities on peripheral tissues are responsible for many of the secondary complications. Therefore, understanding the impact, other than pain control, of morphine on cancer treatment is extremely important. The effect of morphine on tumor growth is still contradictory, as both growth-promoting and growth-inhibiting effects have been observed. Accumulating evidence suggests that morphine can affect proliferation and migration of tumor cells as well as angiogenesis. Various signaling pathways have been suggested to be involved in these extra-analgesic effects of morphine. Suppression of immune system by morphine is an additional complication. This review provides an update on the influence of morphine on the growth and migration potential of tumor cells

    Gratitude mediates quality of life differences between fibromyalgia patients and healthy controls

    Get PDF
    Purpose: Despite a growing literature on the benefits of gratitude for adjustment to chronic illness, little is known about gratitude in medical populations compared to healthy populations, or the degree to which potential deficits in gratitude might impact quality of life. The purpose of the present study was to (1) examine levels of gratitude and quality of life in fibromyalgia patients and healthy controls and (2) consider the role of gratitude in explaining quality of life differences between fibromyalgia patients and healthy controls. Methods: Participants were 173 fibromyalgia patients and 81 healthy controls. All participants completed measures of gratitude, quality of life, and socio-demographics. Results: Although gratitude was positively associated with quality of life, levels of gratitude and quality of life were lower in the fibromyalgia sample relative to the healthy controls. This difference in gratitude partially mediated differences in quality of life between the two groups after controlling for socio-demographic variables. Conclusions: Our findings suggest that gratitude is a valuable positive psychological trait for quality of life in people with fibromyalgia. Interventions to improve gratitude in this patient population may also bring enhancement in quality of life
    corecore