8,921 research outputs found

    Periodicity in Volcanic Gas Plumes: A Review and Analysis

    Get PDF
    Persistent non-explosive passive degassing is a common characteristic of active volcanoes. Distinct periodic components in measurable parameters of gas release have been widely identified over timescales ranging from seconds to months. The development and implementation of high temporal resolution gas measurement techniques now enables the robust quantification of high frequency processes operating on timescales comparable to those detectable in geophysical datasets. This review presents an overview of the current state of understanding regarding periodic volcanic degassing, and evaluates the methods available for detecting periodicity, e.g., autocorrelation, variations of the Fast Fourier Transform (FFT), and the continuous wavelet transform (CWT). Periodicities in volcanic degassing from published studies were summarised and statistically analysed together with analyses of literature-derived datasets where periodicity had not previously been investigated. Finally, an overview of current knowledge on drivers of periodicity was presented and discussed in the framework of four main generating categories, including: (1) non-volcanic (e.g., atmospheric or tidally generated); (2) gas-driven, shallow conduit processes; (3) magma movement, intermediate to shallow storage zone; and (4) deep magmatic processes

    Spatio-temporal modelling of dam deformation using independent component analysis

    Get PDF
    Modelling dam deformation based on monitoring data plays an important role in the assessment of a dam’s safety. Traditional dam deformation modelling methods generally utilise single monitoring point. It means it is necessary to model for each monitoring point and the spatial correlation between points will not be considered using traditional modelling methods. Spatio-temporal modelling methods provide a way to model the dam deformation with only one functional expression and analyse the stability of dam in its entirety. Independent component analysis (ICA) is a statistical method of blind source separation (BSS) and can separate original signals from mixed observables. In this paper, ICA is introduced as a spatio-temporal modelling method for dam deformation. In this method, the deformation data series of all points were processed using ICA as input signals, and a few output independent signals were used to model. The real data experiment with displacement measurements by wire alignment of Wuqiangxi Dam was conducted and the results show that the output independent signals are correlated with physical responses of causative factors such as temperature and water level respectively. This discovery is beneficial in analysing the dam deformation. In addition, ICA is also an effective dimension reduced method for spatio-temporal modelling in dam deformation analysis applications

    Periodicity in volcanic gas plumes: A review and analysis

    Get PDF
    Persistent non-explosive passive degassing is a common characteristic of active volcanoes. Distinct periodic components in measurable parameters of gas release have been widely identified over timescales ranging from seconds to months. The development and implementation of high temporal resolution gas measurement techniques now enables the robust quantification of high frequency processes operating on timescales comparable to those detectable in geophysical datasets. This review presents an overview of the current state of understanding regarding periodic volcanic degassing, and evaluates the methods available for detecting periodicity, e.g., autocorrelation, variations of the Fast Fourier Transform (FFT), and the continuous wavelet transform (CWT). Periodicities in volcanic degassing from published studies were summarised and statistically analysed together with analyses of literature-derived datasets where periodicity had not previously been investigated. Finally, an overview of current knowledge on drivers of periodicity was presented and discussed in the framework of four main generating categories, including: (1) non-volcanic (e.g., atmospheric or tidally generated); (2) gas-driven, shallow conduit processes; (3) magma movement, intermediate to shallow storage zone; and (4) deep magmatic processes.</jats:p

    Solving the subset-sum problem with a light-based device

    Full text link
    We propose a special computational device which uses light rays for solving the subset-sum problem. The device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible subsets of the given set. To each arc we assign either a number from the given set or a predefined constant. When the light is passing through an arc it is delayed by the amount of time indicated by the number placed in that arc. At the destination node we will check if there is a ray whose total delay is equal to the target value of the subset sum problem (plus some constants).Comment: 14 pages, 6 figures, Natural Computing, 200

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Surveying adjustment datum and relative deformation accuracy analysis

    Get PDF
    In the surveying adjustment, unknown parameters are usually not direct observations, but the elements related to these direct observations. In order to determine the unknown parameters adequate known data should be provided, and these necessarily required known data are used to form the adjustment datum. Under different datums, different results will be obtained even with the same direct observations. However, in the practical adjustment calculation, the datum and its effect on the results are always ignored. In this paper, the adjustment datum is firstly discussed and defined as datum equations. Then an adjustment method based on the datum equations and least squares is presented. This method is a generic one, not only suited for the case in an ordinary datum but also in the gravity centre datum or a quasi-datum, and can be easily used to analyse different deformations. Based on this method, the transformation between different reference frames is derived. It shows that the calculation results, deformation and positioning accuracy under one kind of datum are relative and generic. A case study is further introduced and used to test this new method. Based on the case study, the conclusions are reached. It is found that the relative positional root mean square error of each point becomes bigger as the distance between the point and the datum increases, and the relative deformation offsets under different kinds of datum are helpful for reliable deformation analysis

    Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach

    Get PDF
    AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio

    An Investigation of the Role of Radiative and Nonradiative Recombination Processes in InAs/GaAs 1−x Sb x Quantum Dot Solar Cells

    Get PDF
    An InAs/GaAs0.86 Sb 0.14 quantum dot solar cell and a GaAsSb control cell were investigated using temperature-dependent current density–voltage (J–V), external quantum efficiency, photoluminescence (PL), and electroluminescence (EL) measurements. Thermally activated defect states associated with the GaAsSb matrix material are found to account for the reduction of the performance of the solar cell. The rapid quenching of the PL and EL intensity, along with the shift (above 150 K) of the dominant recombination process during spontaneous emission (EL), further indicates the prevalence of nonradiative processes at elevated temperatures in these systems. These findings are also supported by a reduction in the open-circuit voltage at elevated temperatures in these devices

    A semiparametric joint model for terminal trend of quality of life and survival in palliative care research

    Full text link
    Copyright © 2017 John Wiley & Sons, Ltd. Palliative medicine is an interdisciplinary specialty focusing on improving quality of life (QOL) for patients with serious illness and their families. Palliative care programs are available or under development at over 80% of large US hospitals (300+ beds). Palliative care clinical trials present unique analytic challenges relative to evaluating the palliative care treatment efficacy which is to improve patients’ diminishing QOL as disease progresses towards end of life (EOL). A unique feature of palliative care clinical trials is that patients will experience decreasing QOL during the trial despite potentially beneficial treatment. Often longitudinal QOL and survival data are highly correlated which, in the face of censoring, makes it challenging to properly analyze and interpret terminal QOL trend. To address these issues, we propose a novel semiparametric statistical approach to jointly model the terminal trend of QOL and survival data. There are two sub-models in our approach: a semiparametric mixed effects model for longitudinal QOL and a Cox model for survival. We use regression splines method to estimate the nonparametric curves and AIC to select knots. We assess the model performance through simulation to establish a novel modeling approach that could be used in future palliative care research trials. Application of our approach in a recently completed palliative care clinical trial is also presented
    corecore