434 research outputs found

    Primary care management for optimized antithrombotic treatment [PICANT]: study protocol for a cluster-randomized controlled trial

    Get PDF
    Background: Antithrombotic treatment is a continuous therapy that is often performed in general practice and requires careful safety management. The aim of this study is to investigate whether a best practice model that applies major elements of case management, including patient education, can improve antithrombotic management in primary health care in terms of reducing major thromboembolic and bleeding events. Methods: This 24-month cluster-randomized trial will be performed in 690 adult patients from 46 practices. The trial intervention will be a complex intervention involving general practitioners, health care assistants and patients with an indication for oral anticoagulation. To assess adherence to medication and symptoms in patients, as well as to detect complications early, health care assistants will be trained in case management and will use the Coagulation-Monitoring-List (Co-MoL) to regularly monitor patients. Patients will receive information (leaflets and a video), treatment monitoring via the Co-MoL and be motivated to perform self-management. Patients in the control group will continue to receive treatment-as-usual from their general practitioners. The primary endpoint is the combined endpoint of all thromboembolic events requiring hospitalization, and all major bleeding complications. Secondary endpoints are mortality, hospitalization, strokes, major bleeding and thromboembolic complications, severe treatment interactions, the number of adverse events, quality of anticoagulation, health-related quality of life and costs. Further secondary objectives will be investigated to explain the mechanism by which the intervention is effective: patients' assessment of chronic illness care, self-reported adherence to medication, general practitioners' and health care assistants' knowledge, patients' knowledge and satisfaction with shared decision making. Practice recruitment is expected to take place between July and December 2012. Recruitment of eligible patients will start in July 2012. Assessment will occur at three time points: baseline (T0), follow-up after 12 (T1) and after 24 months (T2). Discussion: The efficacy and effectiveness of individual elements of the intervention, such as antithrombotic interventions, self-management concepts in orally anticoagulated patients and the methodological tool, case-management, have already been extensively demonstrated. This project foresees the combination of several proven instruments, as a result of which we expect to profit from a reduction in the major complications associated with antithrombotic treatment

    Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation.

    Get PDF
    Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive GWAS including low-frequency variants (MAF ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n=1,268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n=1,610 and 13,749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8-1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS at the genome-wide significance level, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4 respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA

    Genome-wide microRNA profiling in human fetal nervous tissues by oligonucleotide microarray

    Get PDF
    OBJECTS: Our objective was to develop an oligonucleotide DNA microarray (OMA) for genome-wide microRNA profiling and use this method to find miRNAs, which control organic development especially for nervous system. MATERIALS AND METHODS: Eighteen organic samples included cerebrum and spinal cord samples from two aborted human fetuses. One was 12 gestational weeks old (G12w) and the other was 24 gestational weeks old (G24w). Global miRNA expression patterns of different organs were investigated using OMA and Northern blot. CONCLUSION: The OMA revealed that 72–83% of miRNAs were expressed in human fetal organs. A series of microRNAs were found specifically and higher-expressed in the human fetal nervous system and confirmed consistently by Northern blot, which may play a critical role in nervous system development

    Effects of pesticide mixtures on host-pathogen dynamics of the amphibian chytrid fungus

    Get PDF
    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often cooccur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batra-chochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result could have broad implications for risk assessment of amphibians; the outcome of exposure to multiple stressors may be unpredictable and can differ between species and life stages

    Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?

    Get PDF
    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species

    Machine learning for regulatory analysis and transcription factor target prediction in yeast

    Get PDF
    High throughput technologies, including array-based chromatin immunoprecipitation, have rapidly increased our knowledge of transcriptional maps—the identity and location of regulatory binding sites within genomes. Still, the full identification of sites, even in lower eukaryotes, remains largely incomplete. In this paper we develop a supervised learning approach to site identification using support vector machines (SVMs) to combine 26 different data types. A comparison with the standard approach to site identification using position specific scoring matrices (PSSMs) for a set of 104 Saccharomyces cerevisiae regulators indicates that our SVM-based target classification is more sensitive (73 vs. 20%) when specificity and positive predictive value are the same. We have applied our SVM classifier for each transcriptional regulator to all promoters in the yeast genome to obtain thousands of new targets, which are currently being analyzed and refined to limit the risk of classifier over-fitting. For the purpose of illustration we discuss several results, including biochemical pathway predictions for Gcn4 and Rap1. For both transcription factors SVM predictions match well with the known biology of control mechanisms, and possible new roles for these factors are suggested, such as a function for Rap1 in regulating fermentative growth. We also examine the promoter melting temperature curves for the targets of YJR060W, and show that targets of this TF have potentially unique physical properties which distinguish them from other genes. The SVM output automatically provides the means to rank dataset features to identify important biological elements. We use this property to rank classifying k-mers, thereby reconstructing known binding sites for several TFs, and to rank expression experiments, determining the conditions under which Fhl1, the factor responsible for expression of ribosomal protein genes, is active. We can see that targets of Fhl1 are differentially expressed in the chosen conditions as compared to the expression of average and negative set genes. SVM-based classifiers provide a robust framework for analysis of regulatory networks. Processing of classifier outputs can provide high quality predictions and biological insight into functions of particular transcription factors. Future work on this method will focus on increasing the accuracy and quality of predictions using feature reduction and clustering strategies. Since predictions have been made on only 104 TFs in yeast, new classifiers will be built for the remaining 100 factors which have available binding data

    Phosphorylation of LCRMP-1 by GSK3β Promotes Filopoda Formation, Migration and Invasion Abilities in Lung Cancer Cells

    Get PDF
    LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome

    Recent research on changes in genomic regulation and protein expression in intracerebral haemorrhage

    Full text link
    Intracerebral haemorrhage (ICH) is a devastating form of stroke that accounts for roughly 10% of all strokes and the effects on those that survive are often debilitating. To date, no suitable therapy exists. Recent work has examined alterations in gene and protein expression after ICH. The focus of this review is to outline the current knowledge of changes in genetic and protein expression after ICH and how those changes may affect the course of brain injury. Both animal and human data are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73607/1/j.1747-4949.2007.00160.x.pd

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Effects of Exogenous Galanin on Neuropathic Pain State and Change of Galanin and Its Receptors in DRG and SDH after Sciatic Nerve-Pinch Injury in Rat

    Get PDF
    A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury
    corecore