20 research outputs found

    Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve

    Get PDF
    To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world

    Interactions Between Laminin Receptor and the Cytoskeleton During Translation and Cell Motility

    Get PDF
    Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration

    Anomalous ocean conditions in 2015: impacts on spring Chinook salmon and their prey field

    Full text link

    Spatial ecology and growth in early life stages of bay anchovy Anchoa mitchilli in Chesapeake Bay (USA)

    Full text link
    The bay anchovy Anchoa mitchilli is the most abundant fish in Chesapeake Bay (USA) and is a vital link between plankton and piscivores within the trophic structure of this large estuarine ecosystem. Baywide distributions and abundances of bay anchovy eggs and larvae, and larval growth, were analyzed in a 5 yr program to evaluate temporal and spatial variability based on research surveys in the 1995-1999 spawning seasons. Effects of environmental variability and abundance of zooplankton that serve as prey for larval bay anchovy were analyzed. In the years of these surveys, 97.6% of eggs and 98.8% of larvae occurred in the polyhaline lower bay. Median egg and larval abundances differed more than 10-fold for surveys conducted in the 5 yr and were highest in the lower bay. Within years, median larval abundance (ind. m-2) in the lower bay was generally 1-2 orders of magnitude higher than upper-bay abundance. Salinity, temperature, and dissolved oxygen explained 12% of the spatial and temporal variability in egg abundances and accounted for 27% of the variability in larval abundances. The mean, baywide growth rate for larvae over the 5 yr period was 0.75 ± 0.01 mm d-1, and was best explained by zooplankton concentration and feeding incidence. Among years, mean growth rates ranged from 0.68 (in 1999) to 0.81 (in 1998) mm d-1 and were fastest in the upper bay. We identified environmental factors, especially salinity, that contributed to broadscale variability in egg and larval production.</jats:p
    corecore