45 research outputs found

    Genetic variation in DNA-repair pathways and response to radiochemotherapy in esophageal adenocarcinoma: A retrospective cohort study of the Eastern Cooperative Oncology Group

    Get PDF
    Background: Recent data in esophageal cancer suggests the variant allele of a single-nucleotide polymorphism (SNP) in XRCC1 may be associated with resistance to radiochemotherapy. However, this SNP has not been assessed in a histologically homogeneous clinical trial cohort that has been treated with a uniform approach. In addition, whether germline DNA may serve as a surrogate for tumor genotype at this locus is unknown in this disease. Our objective was to assess this SNP in relation to the pathologic complete response (pCR) rate in subjects with esophageal adenocarcinoma who received cisplatin-based preoperative radiochemotherapy in a multicenter clinical trial (Eastern Cooperative Oncology Group 1201). As a secondary aim, we investigated the rate of allelic imbalance between germline and tumor DNA.Methods: Eighty-one eligible treatment-naïve subjects with newly diagnosed resectable esophageal adenocarcinoma received radiotherapy (45 Gy) concurrent with cisplatin-based chemotherapy, with planned subsequent surgical resection. The primary endpoint was pCR, defined as complete absence of tumor in the surgical specimen after radiochemotherapy. Using germline DNA from 60 subjects, we examined the base-excision repair SNP, XRCC1 Arg399Gln, and 4 other SNPs in nucleotide excision (XPD Lys751Gln and Asp312Asn, ERCC1 3' flank) and double-stranded break (XRCC2 5' flank) repair pathways, and correlated genotype with pCR rate. Paired tumor tissue was used to estimate the frequency of allelic imbalance at the XRCC1 SNP.Results: The variant allele of the XRCC1 SNP (399Gln) was detected in 52% of subjects. Only 6% of subjects with the variant allele experienced a pCR, compared to 28% of subjects without the variant allele (odds ratio 5.37 for failing to achieve pCR, p = 0.062). Allelic imbalance at this locus was found in only 10% of informative subjects, suggesting that germline genotype may reflect tumor genotype at this locus. No significant association with pCR was noted for other SNPs.Conclusions: Assessed for the first time in a prospective, interventional trial cohort of esophageal adenocarcinoma, XRCC1 399Gln was associated with resistance to radiochemotherapy. Further investigation of this genetic variation is warranted in larger cohorts. In addition, these data indicate that germline genotype may serve as a surrogate for tumor genotype at this locus. © 2011 Yoon et al; licensee BioMed Central Ltd

    Global Changes in Staphylococcus aureus Gene Expression in Human Blood

    Get PDF
    Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence

    Immunohistochemical expression of insulin-like growth factor binding protein-3 in invasive breast cancers and ductal carcinoma in situ: implications for clinicopathology and patient outcome

    Get PDF
    INTRODUCTION: Insulin-like growth factor binding protein-3 (IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGF-independent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates EGF (epidermal growth factor) and interacts with HER-2. Previously, high IGFBP-3 levels in breast cancers have been determined by enzyme-linked immunosorbent assay and immunoradiometric assay methods. In vitro, IGFBP-3's mechanisms of action may involve cell membrane binding and nuclear translocation. To evaluate tumour-specific IGFBP-3 expression and its subcellular localisation, this study examined immunohistochemical IGFBP-3 expression in a series of invasive ductal breast cancers (IDCs) with synchronous ductal carcinomas in situ (DCIS) in relation to clinicopathological variables and patient outcome. METHODS: Immunohistochemical expression of IGFBP-3 was evaluated with the sheep polyclonal antiserum (developed in house) with staining performed as described previously. RESULTS: IGFBP-3 was evaluable in 101 patients with a variable pattern of cytoplasmic expression (positivity of 1+/2+ score) in 85% of invasive and 90% of DCIS components. Strong (2+) IGFBP-3 expression was evident in 32 IDCs and 40 cases of DCIS. A minority of invasive tumours (15%) and DCIS (10%) lacked IGFBP-3 expression. Nuclear IGFBP-3 expression was not detectable in either invasive cancers or DCIS, with a consistent similarity in IGFBP-3 immunoreactivity in IDCs and DCIS. Positive IGFBP-3 expression showed a possible trend in association with increased proliferation (P = 0.096), oestrogen receptor (ER) negativity (P = 0.06) and HER-2 overexpression (P = 0.065) in invasive tumours and a strong association with ER negativity (P = 0.037) in DCIS. Although IGFBP-3 expression was not an independent prognosticator, IGFBP-3-positive breast cancers may have shorter disease-free and overall survivals, although these did not reach statistical significance. CONCLUSIONS: Increased breast epithelial IGFBP-3 expression is a feature of tumorigenesis with cytoplasmic immunoreactivity in the absence of significant nuclear localisation in IDCs and DCIS. There are trends between high levels of IGFBP-3 and poor prognostic features, suggesting that IGFBP-3 is a potential mitogen. IGFBP-3 is not an independent prognosticator for overall survival or disease-free survival, to reflect its dual effects on breast cancer growth regulated by complex pathways in vivo that may relate to its interactions with other growth factors

    Structural Alterations in a Component of Cytochrome c Oxidase and Molecular Evolution of Pathogenic Neisseria in Humans

    Get PDF
    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb3 oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host

    Characterization of hepatic enzyme activity in older adults with dementia: potential impact on personalizing pharmacotherapy

    No full text
    Noll L Campbell,1–4 Todd C Skaar,5 Anthony J Perkins,2 Sujuan Gao,2,3,6 Lang Li,7 Babar A Khan,2,3,5 Malaz A Boustani2,3,81College of Pharmacy, Purdue University, West Lafayette, 2Indiana University Center for Aging Research, 3Regenstrief Institute, 4Department of Pharmacy, Eskenazi Health Services, 5Division of Clinical Pharmacology, Department of Medicine, 6Department of Biostatistics, 7Department of Medical and Molecular Genetics, Indiana University School of Medicine, 8Center for Innovation and Implementation Science, Indiana University, Indianapolis, IN, USAObjective: To determine the frequency of pharmacogenomic variants and concurrent medications that may alter the efficacy and tolerability of acetylcholinesterase inhibitors (AChEIs).Materials and methods: A multisite cross-sectional study was carried out across four memory care practices in the greater Indianapolis area. Participants were adults aged 65 years and older with a diagnosis of probable or possible Alzheimer’s disease (AD) (n=105). Blood samples and self-reported medication data were collected. Since two of the three AChEIs are metabolized by cytochrome P450 (CYP)-2D6, we determined the frequency of functional genetic variants in the CYP2D6 gene and calculated their predicted CYP2D6-activity scores. Concurrent medication data were collected from self-reported medication surveys, and their predicted effect on the pharmacokinetics of AChEIs was determined based on their known effects on CYP2D6 and CYP3A4/5 enzyme activities.Results: Among the 105 subjects enrolled, 72% were female and 36% were African American. Subjects had a mean age of 79.6 years. The population used a mean of eight medications per day (prescription and nonprescription). The CYP2D6 activity score frequencies were 0 (3.8%), 0.5 (4.8%), 1.0 (36.2%), 1.5–2.0 (51.4%), and >2.0 (3.8%). Nineteen subjects (18.1%) used a medication considered a strong or moderate inhibitor of CYP2D6, and eight subjects (7.6%) used a medication considered a strong or moderate inhibitor of CYP3A4/5. In total, 28.6% of the study population was predicted to have reduced activity of the CYP2D6 or CYP3A4/5 enzymes due to either genetic variants or concomitant medications.Conclusion: Both pharmacogenetic variants and concurrent drug therapies that are predicted to alter the pharmacokinetics of AChEIs should be evaluated in older adults with AD. Pharmacogenetic and drug-interaction data may help personalize AD therapy and increase adherence by improving tolerability.Keywords: dementia, acetylcholinesterase inhibitor, pharmacogenomic
    corecore