11 research outputs found

    The Cambrian to mid Devonian basin development and deformation history of Eastern Avalonia, east of the Midlands Microcraton: new data and a review

    No full text
    A review is given of recently published and new data on Avalonia east of the Midlands Microcraton. The three megasequences from Cambrian to mid Devonian described in Wales and Welsh Borderland are also present east of the Midlands Microcraton (Brabant Massif, Condroz, Ardennes, Remscheid and Ebbe inliers, Krefeld high). The three mega-sequences are caused by a tectonic driving mechanism and are explained by three different geodynamic contexts: an earlier phase with extensional basins or rifting and rather thick sequences, when Avalonia was still attached to Gondwana; a second phase with a shelf basin with moderately thin sequences when Avalonia was a separate continent and a later phase with a shelf or foreland basin development and thick sequences. Deformation of the megasequences 1 and 2 or 1 to 3 varies between areas. In Wales and the Lake District the Acadian phase is long-lived and active from early to mid Devonian. In the Ardennes inliers a deformation is active between the late Ordovician and the Silurian (Ardennian Phase), with a similar intensity as the core of the Brabant Massif, when present erosion levels are compared. The Brabant Massif is partly deformed by the long-lived Brabantian Phase from late Silurian till early mid Devonian. Both the Ardennes inliers and the Brabant Massif are not classic orogenic belts, only slate belts where no more than the epizone is reached at present erosion levels. Areas supposedly close to the microcraton or basement are nearly undeformed (SW Brabant Massif and central Condroz). A model of anticlockwise rotation of Avalonia of about 55° from Caradoc to Emsian is proposed to explain the deposition setting of megasequence 3 and the subsequent Acadian and Brabantian deformation. Immediately after the Avalonian microcontinent touched Baltica in Caradoc times it created a short-lived subduction magmatic event from The Wash to the Brabant Massif and soon after the magmatism ended a foreland basin developed. Possibly during and after that development a long-lived and slow compressional event occurred, leading to the deformation of the Anglo-Brabant Deformation Belt. In the early Devonian, contemporaneous with the shortening of the Anglo-Brabant Deformation Belt, extension occurred in the Rheno-Hercynian Zone, possibly caused by the same slow rotation of Avalonia. More evidence emerges that Avalonia cast of the Midlands Microcraton comprises not one but probably two terranes: the remnant of the palaeocontinent Avalonia, and what is called the palaeocontinent Far Eastern Avalonia; the latter is only occasionally observed in the few deep boreholes into the Heligoland-Pomerania Deformation Belt, in southern Denmark, NE Germany and NW Poland, with scant available indirect data in between indicating only Proterozoic basement and no Caledonian deformation. For Far Eastern Avalonia a similar palaeogeographical history is postulated as Avalonia, with rifting from Gondwana in Arenig or earlier times, collision with Baltica before the mid-Ashgill and deformation between the late Ordovician and latest Silurian. The Avalonia concept might need to be expanded to an 'Avalonian Terrane Assemblage' with cratonic cores and small short-lived oceans as in the Armorican Terrane Assemblage.status: publishe

    Objective assessment of source models for seismic hazard studies : with a worked example from UK data

    Get PDF
    Up to now, the search for increased reliability in probabilistic seismic hazard analysis (PSHA) has concentrated on ways of assessing expert opinion and subjective judgement. Although in some areas of PSHA subjective opinion is unavoidable, there is a danger that assessment procedures and review methods contribute further subjective judgements on top of those already elicited. It is helpful to find techniques for objectively assessing seismic source models that show what the interpretations physically mean in terms of seismicity. Experience shows that well-meaning but flawed design decisions can lead to source models that are incompatible with the seismic history that was used as input. In this paper a method is demonstrated in which large numbers of synthetic earthquake catalogues, that match the completeness thresholds of the historical catalogue, are generated. The study area can be divided into a grid of uniform cells, and the number of earthquakes in each cell in both the historical catalogue and each simulated catalogue are then counted. Comparison of the historical pattern and a set of 1,000 simulated patterns, using a X2 test, shows if the historical pattern is credibly a member of the set of outcomes obtainable from the seismic source model. A second method is to chart the distribution of a large sample of simulated catalogues in terms of magnitude frequency, and observe whether the historical catalogue is comfortably within this distribution, or an outlier. If it proves impossible to replicate the historical catalogue using the model, it casts doubt on whether the model is a valid depiction of the seismicity rates that will govern the future hazard. At the very least, the disparity needs careful investigation to ensure the model is error-free. A worked example is presented here for the UK, using a source model that was used in Global Seismic Hazard Map (GSHAP), compared to one that was artificially constructed to be credible but flawed. Two tests find the GSHAP model to be an acceptable representation of the pattern of seismicity in the UK, while the artificial model is conclusively rejected
    corecore