27 research outputs found

    Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    Get PDF
    Background: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Base

    Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S.

    Get PDF
    Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 90 (2008): 15-27, doi:10.1007/s10533-008-9227-2.Nitrogen from atmospheric deposition serves as the dominant source of new nitrogen to forested ecosystems in the northeastern U.S.. By combining isotopic data obtained using the denitrifier method, with chemistry and hydrology measurements we determined the relative importance of sources and control mechanisms on nitrate (NO3-) export from five forested watersheds in the Connecticut River watershed. Microbially produced NO3- was the dominant source (82-100%) of NO3- to the sampled streams as indicated by the δ15N and δ18O of NO3-. Seasonal variations in the δ18O-NO3- in streamwater are controlled by shifting hydrology and temperature affects on biotic processing, resulting in a relative increase in unprocessed NO3- export during winter months. Mass balance estimates find that the unprocessed atmospherically derived NO3- stream flux represents less than 3% of the atmospherically delivered wet NO3- flux to the region. This suggests that despite chronically elevated nitrogen deposition these forests are not nitrogen saturated and are retaining, removing, and reprocessing the vast majority of NO3- delivered to them throughout the year. These results confirm previous work within Northeastern U.S. forests and extend observations to watersheds not dominated by a snow-melt driven hydrology. In contrast to previous work, unprocessed atmospherically derived NO3- export is associated with the period of high recharge and low biotic activity as opposed to spring snowmelt and other large runoff events.This work was funded by an EPA STAR Fellowship (FP-91637501-1) and a grant from QLF/The Sound Conservancy to RTB

    Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential

    Get PDF
    This work was funded by a European Commission Research Training Grant RTN2-2001-00049, the Centre of Excellence for Evolutionary Research at the University of Jyväskylä and a Marie Curie Initial Training Network, ‘Understanding the evolutionary origin of biological diversity’ (ITN-2008-213780 SPECIATION)Background: Widely distributed species with populations adapted to different environmental conditions can provide valuable opportunities for tracing the onset of reproductive incompatibilities and their role in the speciation process. Drosophila montana, a D. virilis group species found in high latitude boreal forests in Nearctic and Palearctic regions around the globe, could be an excellent model system for studying the early stages of speciation, as a wealth of information concerning this species' ecology, mating system, life history, genetics and phylogeography is available. However, reproductive barriers between populations have hereto not been investigated. Results: We report both pre- and postmating barriers to reproduction between flies from European (Finnish) and North American (Canadian) populations of Drosophila montana. Using a series of mate-choice designs, we show that flies from these two populations mate assortatively (i.e., exhibit significant sexual isolation) while emphasizing the importance of experimental design in these kinds of studies. We also assessed potential postmating isolation by quantifying egg and progeny production in intra-and interpopulation crosses and show a significant one-way reduction in progeny production, affecting both male and female offspring equally. Conclusion: We provide evidence that allopatric D. montana populations exhibit reproductive isolation and we discuss the potential mechanisms involved. Our data emphasize the importance of experimental design in studies on premating isolation between recently diverged taxa and suggest that postmating barriers may be due to postcopulatory-prezygotic mechanisms. D. montana populations seem to be evolving multiple barriers to gene flow in allopatry and our study lays the groundwork for future investigations of the genetic and phenotypic mechanisms underlying these barriers.Publisher PDFPeer reviewe
    corecore