111 research outputs found
Glucose and Fatty Acid Metabolism in a 3 Tissue In-Vitro Model Challenged with Normo- and Hyperglycaemia
Nutrient balance in the human body is maintained through systemic signaling between different cells and tissues. Breaking down this circuitry to its most basic elements and reconstructing the metabolic network in-vitro provides a systematic method to gain a better understanding of how cross-talk between the organs contributes to the whole body metabolic profile and of the specific role of each different cell type. To this end, a 3-way connected culture of hepatocytes, adipose tissue and endothelial cells representing a simplified model of energetic substrate metabolism in the visceral region was developed. The 3-way culture was shown to maintain glucose and fatty acid homeostasis in-vitro. Subsequently it was challenged with insulin and high glucose concentrations to simulate hyperglycaemia. The aim was to study the capacity of the 3-way culture to maintain or restore normal circulating glucose concentrations in response to insulin and to investigate the effects these conditions on other metabolites involved in glucose and lipid metabolism. The results show that the system’s metabolic profile changes dramatically in the presence of high concentrations of glucose, and that these changes are modulated by the presence of insulin. Furthermore, we observed an increase in E-selectin levels in hyperglycaemic conditions and increased IL-6 concentrations in insulin-free-hyperglycaemic conditions, indicating, respectively, endothelial injury and proinflammatory stress in the challenged 3-way system
A role for Piezo2 in EPAC1-dependent mechanical allodynia
N.E. and J.W. designed and supervised experiments. N.E. performed most of the in vivo and
in vitro experiments. J.L. performed experiments to characterize hPiezo2. G.H and G.L.
supervised by U.O., and J.T. and J.C. cloned hPiezo. L.B. performed the in vivo electrophysiology
under the supervision of A.D. M.G. helped with the overexpression studies.M.M.
performed surgery. Y.I. provided the Epac1 / mice. F.Z. provided
the Epac constructs. N.E. and J.W. wrote manuscript with contributions of all authors. N.E.,
J.L. and L.B. contributed to data analysis and all authors contributed to the discussionsAberrant mechanosensation has an important role in different pain states. Here we show
that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction
contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during
neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1 / mice. The
Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory
neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the
activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase
C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces
long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse
Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally,
8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical
excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the
development of mechanical allodynia during neuropathic pain.Netherlands Organization for Scientific Research (NWO)Jose Castillejo fellowship
JC2010-0196Spanish GovernmentMedical Research Council UK (MRC)WCU at SNU
R31-2008-000-10103-0EU IMI Europain grantBBSRC LOLA grantWellcome TrustVersus Arthritis
20200Biotechnology and Biological Sciences Research Council (BBSRC)
BB/F000227/1Medical Research Council UK (MRC)
G0901905
G9717869
G110034
Structural genomics target selection for the New York consortium on membrane protein structure
The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space
Importance of Non-Selective Cation Channel TRPV4 Interaction with Cytoskeleton and Their Reciprocal Regulations in Cultured Cells
BACKGROUND: TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE: TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients
Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes
The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described
- …