27 research outputs found

    The neural correlates of dreaming.

    Get PDF
    Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep

    Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory

    No full text
    Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue for alternative 'activity-silent' substrates. Using monkey and human electrophysiology data, we show here that attractor dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex (PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus information was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus representation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse transcranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating the causal role of prefrontal reactivations in determining working-memory behavior

    Antecedents to training engagement

    No full text
    This study aims to discuss the joint relationship of trainer directiveness and trainee learning experiences with training engagement. Survey responses were gathered from 99 employees at Johor Port, Johor, Malaysia using self-administered questionnaires. The result revealed that trainer directiveness has a positive relationship with training engagement. It was also found that trainees’ learning experiences are positively correlated with training engagement. This study suggests that organizations take into account the differences in trainer’s instructional style and trainee’s cognitive process and motivation when implementing training programs since both factors may significantly affect the outcome of the training program as implied by the findings of this study. The study also proposes to the trainers the use of directive style in instructional settings as the specialization of directiveness give a positive influence to training engagement and subsequently, provide benefits to the trainee learning
    corecore