1,791 research outputs found

    Mapping and modeling the distribution of the rosy wolfsnail, Euglandina spp., in Hawaiʻi

    Get PDF
    Master’s in Environmental Management (MEM) Capstone Report

    A bound on 6D N=1 supergravities

    Get PDF
    We prove that there are only finitely many distinct semi-simple gauge groups and matter representations possible in consistent 6D chiral (1,0) supergravity theories with one tensor multiplet. The proof relies only on features of the low-energy theory; the consistency conditions we impose are that anomalies should be cancelled by the Green-Schwarz mechanism, and that the kinetic terms for all fields should be positive in some region of moduli space. This result does not apply to the case of the non-chiral (1,1) supergravities, which are not constrained by anomaly cancellation.Comment: 23 pages, no figures; two paragraphs added to the proof in Appendix A covering the SU(2) and SU(3) case, other minor correction

    Rapamycin added to human CD25+ cell cultures activated through CD3/CD28 enriches for CD4+CD25+CD27+Foxp3+ regulatory T cells

    Get PDF

    Non--decoupling, triviality and the ρ\rho parameter

    Full text link
    The dependence of the ρ\rho parameter on the mass of the Higgs scalar and the top quark is computed non--perturbatively using the 1/NF1/N_F expansion in the standard model. We find an explicit expression for the ρ\rho parameter that requires the presence of a physical cutoff. This should come as no surprise since the theory is presumably trivial. By taking this cutoff into account, we find that the ρ\rho parameter can take values only within a limited range and has finite ambiguities that are suppressed by inverse powers of the cutoff scale, the so called ``scaling--violations". We find that large deviations from the perturbative results are possible, but only when the cutoff effects are also large.Comment: 16pp, Figures NOT included, harvmac, minor modifications incl. wording, refs., UCLA/92/TEP/23,OHSTPY-HEP-T-92-00

    String Pair Creations in D-brane Systems

    Full text link
    We investigate the criterion, on the Born-Infeld background fields, for the open string pair creation to occur in Dpp-(anti-)Dpp-brane systems. Although the pair creation occurs generically in both Dpp-Dpp and Dpp-anti-Dpp systems for the cases which meet the criterion, it is more drastic in Dpp-anti-Dpp-brane systems by some exponential factor depending on the background fields. Various configurations exhibiting pair creations are obtained via duality transformations. These include the spacelike scissors and two D-strings (slanted at different angles) passing through each other. We raise the scissors paradox and suggest a resolution based on the triple junction in IIB setup.Comment: V2. 1+28 pages, 5 figures in JHEP3, minor changes, added reference

    One-loop Correction and the Dilaton Runaway Problem

    Get PDF
    We examine the one-loop vacuum structure of an effective theory of gaugino condensation coupled to the dilaton for string models in which the gauge coupling constant does not receive string threshold corrections. The new ingredients in our treatment are that we take into account the one-loop correction to the dilaton K\"ahler potential and we use a formulation which includes a chiral field HH corresponding to the gaugino bilinear. We find through explicit calculation that supersymmetry in the Yang-Mills sector is broken by gaugino condensation. The dilaton and HH field have masses on the order of the gaugino condensation scale independently of the dilaton VEV. Although the calculation performed here is at best a model of the full gaugino condensation dynamics, the result shows that the one-loop correction to the dilaton K\"ahler potential as well as the detailed dynamics at the gaugino condensation scale may play an important role in solving the dilaton runaway problem.Comment: 19 page

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    BPS-Saturated Walls in Supersymmetric Theories

    Get PDF
    Domain-wall solutions in four-dimensional supersymmetric field theories with distinct discrete vacuum states lead to the spontaneous breaking of supersymmetry, either completely or partially. We consider in detail the case when the domain walls are the BPS-saturated states, and 1/2 of supersymmetry is preserved. Several useful criteria that relate the preservation of 1/2 of supersymmetry on the domain walls to the central extension appearing in the N=1 superalgebras are established. We explain how the central extension can appear in N=1 supersymmetry and explicitly obtain the central charge in various models: the generalized Wess-Zumino models, and supersymmetric Yang-Mills theories with or without matter. The BPS-saturated domain walls satisfy the first-order differential equations which we call the creek equations, since they formally coincide with the (complexified) equations of motion of an analog high-viscosity fluid on a profile which is given by the superpotential of the original problem. Some possible applications are considered.Comment: Several equations are corrected, the discussion of the two-dimensional soliton in Section 6 is modified, references are updated and expande

    Non-Equilibrium Electron Transport in Two-Dimensional Nano-Structures Modeled by Green's Functions and the Finite-Element Method

    Get PDF
    We use the effective-mass approximation and the density-functional theory with the local-density approximation for modeling two-dimensional nano-structures connected phase-coherently to two infinite leads. Using the non-equilibrium Green's function method the electron density and the current are calculated under a bias voltage. The problem of solving for the Green's functions numerically is formulated using the finite-element method (FEM). The Green's functions have non-reflecting open boundary conditions to take care of the infinite size of the system. We show how these boundary conditions are formulated in the FEM. The scheme is tested by calculating transmission probabilities for simple model potentials. The potential of the scheme is demonstrated by determining non-linear current-voltage behaviors of resonant tunneling structures.Comment: 13 pages,15 figure
    corecore