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Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green’s
functions and the finite-element method

P. Havu! V. Havu? M. J. Puskd, and R. M. Niemineh
ILaboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
2Institute of Mathematics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
(Received 6 August 2003; published 19 March 2004

We use the effective-mass approximation and the density-functional theory with the local-density approxi-
mation for modeling two-dimensional nanostructures connected phase coherently to two infinite leads. Using
the nonequilibrium Green's-function method the electron density and the current are calculated under a bias
voltage. The problem of solving for the Green’s functions numerically is formulated using the finite-element
method(FEM). The Green’s functions have nonreflecting open boundary conditions to take care of the infinite
size of the system. We show how these boundary conditions are formulated in the FEM. The scheme is tested
by calculating transmission probabilities for simple model potentials. The potential of the scheme is demon-
strated by determining nonlinear current-voltage behaviors of resonant tunneling structures.

DOI: 10.1103/PhysRevB.69.115325 PACS nuniger72.10—d, 71.15-m

[. INTRODUCTION other possibility is to use DFT combined with the nonequi-
librium Green's-function(NEGP method® In this scheme

Two-dimensional (2D) nanodevices are structures in the wave functions are not calculated explicitly in the device
which electrons move in a restricted nanometer-size are&egion. The NEGF approach also enables the addition of a
The phase-coherence length of electrons is of the order of tHéias voltage between the leads and the calculation of the
dimensions of the device. Electron transport through nanodecurrent through the system also in the nonequilibrium state.
vices cannot be modeled using the traditional description 1he electronic-structure calculations using the Green's
based on diffusion or Boltzmann equations. One has to usef§nctions demand extensive computer resources. Therefore

method which takes the quantum-mechanical character of tHf€ numerical method for the Green’s-function implementa-

carriers, e.g., quantum interference, explicitly into accdunt. tion has to be chosen carefully. There is a wide range of

Nanodevices are fabricated using semiconductordifferent numerical methods available today for electronic-

heterostructure techniques. A layer of semiconduéeog., structure calculations, e.g., the finite-difference methtte

. . linear combinations of atomic orbitals method, the wavelet
AlGaAs) is grown on top of another semiconduct@aAs method’ and the plane-wave methbamong the most popu-

\év.']ffh molebculzr—beam epr;]axy. IThe two semlcorrducForshhavqar ones. Previously, the Green’s-function method coupled to
! grent and gaps so't at eectrqns accumulate In the PQ3eT has heen used in nanostructure calculations employing
tential well at the semiconductor interface and form a 2Dg5mic orbital$ localized optimized orbitals in real

electron_ gas. Above_the semiconductor layer metallic ga_1te§pacel,1 Gaussian orbital® or wavelet$3 as basis functions.
are fabricated. Applying voltage on them the electron motion * | the present work we have adopted the finite-element
can also be restricted in the horizontal direction and nanodenethod (FEM) to study 2D nanostructures within the
vices, such as quantum point contacts and quantum dots, agffective-mass theory and using the DFT-NEGF scheme.
created. Previously, in electronic-structure calculations the FEM has
The quantum-mechanical modeling of 2D nanostucturepeen used, for example, in Refs. 14—18. The main advan-
is usually based on the effective-mass approximation. For theages gained by the FEM in the present context are the pos-
ground-state carrier distribution one can employ, for ex-sibility to control the accuracy of the approximation via
ample, Monte Carlo methofi®r density-functional theory mesh refinements, the ability to simulate easily different geo-
(DFT).2 The description of isolated structures is rathermetrical configurations of the system, and the ease in the
straightforward because the system is finite and all the eledreatment of the boundary conditions. Moreover, the evalua-
tron states can be calculated. Often the nanodevice is cotion of the basis functions is fast and the ensuing sparse
nected to a measuring system by leads and the currefihear systems allow the use of fast sparse solvers. In prac-
through the system is measured. If the connection is wealice, we have chosen to use piecewise polynomials as basis
the nanostructure can still be approximated as an isolateflinctions. The polynomials are very fast and stable to evalu-
system, but in the case of strong coupling the combinedte in any computational environment. The approximation
nanostructure-leads system has to be described. In this capeoperties of the polynomials are well known and several
the leads can have a considerable effect on the electron&rror bounds are availablté.In the FEM the open boundary
structure of the nanodevice. The electronic structure of thigonditions are easier to implement than in the finite-
kind of open system can be obtained using DFT by calculatdifference methotl and in the basis set methdd&'®in
ing the wave functions in the scattering formalism using thewhich they are derived by first writing down the infinite
Lippmann-Schwinger equatidnThe method also relates to discretization matrix and then cutting out the central area
the conductance of the system in the limit of zero bias. Anfrom it. In the FEM these boundary conditions are written in
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FIG. 2. Effective potentials and Fermi levels under the bias
FIG. 1. Model nanostructure between two infinite leads. voltage.

a simpler and more intuitive way as will be shown in this

work approximated using a harmonic potential profif8.in our

Wi frect tomi its which derived b N model this approximation cannot be used, because we solve
= use efiective atomic units which are derived by Pl the electrostatic potential of an infinite system requiring

ting the fundamental con'starm;h:me: 1, and the mate- that the system is charge neutral. In order to keep the model
rial constants, the effective electron mass and the dlelectrlcszim le the confinement of the electrons is established b
constantm* = e=1 respectively. The effective atomic units P y

are transformed to the usual atomic units using the relation§hapm.g th'e backgrounq charge and, optionally, by external
potentials in certain regions of the system.

€ € We divide the infinite system into three separate areas as
Length:  1ag =1—ae~—(0.529 17K 10 )m, shown in Fig. 1, the central aréd, the left region(), , and
m m the right regionQlr. We denote the boundary between the
- regions() and (), asd{), and between the region3 and
Energy: 1 hartree=1 Ha =1— Ha Qg as dQlg. The Green’s functions are calculated in the
€ region(). 7€), anddg are nonreflecting open boundaries.
On the other two boundarie®)pp,, Which are far enough

* . . . . .
from the important device region, the potential is assumed to

2 27.2116 eV, be infinite, so that the Green'’s functions vanish there.
We solve for the self-consistent electron structure of the
m* m* system iteratively. The electron density is calculated from the
Current: 1 a.b.= 1? aus~ ?6-6231 mA. Green'’s functions. The effective potential is calculated from

the electron density as usual in the DFT within the local-

The organization of the present paper is as follows. Indensity approximatioLDA). After mixing the new effec-
Sec. II. we present our 2D nanostructure model and explaifive potential with potential from the previous iteration the
how the Green’s functions are used in the electronic-structurelectron density is recalculated. The loop is repeated until
and current calculations. In Sec. Il we formulate the solutionconvergence is achieved.
of the Green’s functions within the FEM. Finally, in Sec. IV The effective potential has four terms
we deal with our test cases, which include confining well and
bottleneck model potentials and double-wall barrier systems. Vett=Vet Vet Vpiast Vgate: («h

Section V contains the conclusions.
where V. and V,. are the Coulomb and the exchange-

Il. MODEL AND GREEN'S-FUNCTION FORMULATION correlation potentials arising from the charge distributions,
) ) respectively. The calculation 0¥ is discussed below in
A. The model for two-dimensional nanostructures more detail. Fol/,., we use the recent 2D-LDA functional

In real nanodevices electrons of the 2D electron gas are ihy Attacaliteet al 22

a potential well at the interface between two semiconductors. V,,;,. takes care of the boundary conditions under the bias
The electron density in the well is neutralized by a positivelyvoltage® The total electrostatic potential has different levels
ionized donor layer separated from the potential well. Then the right and left leads. This introducsds,,s as a linear
lateral confinement of electrons is obtained by gate voltagesamp potential ovef). In the regions), and Qg, Ve is
Electrons are in practice in the ground state with respect t@g|culated as a potential of the infinig@llium) wire. Then

the mqtion _perpendic_ular to the interface. Therefore OUR; - is also continuous i is large enough, so that the
model is strictly two dimensional. electron density im() g is close to the electron density of

A schematic sketch of the model is in Fig. 1. It shows thean infinite wire. If this is not the case a discontinuity causes

region of interest between two semi-infinite leads. The po_unphysical effects near the boundarie®, q.

tential profile is a combination of interactions between elec- The ensuing energy scheme is shown in Fig. 2. Also the
trons and the positive constant background chagglsum), Eermi levels in the right and left leads differ by the applied

and the external potential caused by the gate voltages. Thus, ; .
the layer of ionized donors and the 2D electron layer coinPias VOItageAVyias. Ve is an external gate potential. Us-
cide in our model. In many models the potential profile isid date voltages it is possible to increase or decrease the
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potential in certain regions, for example, to increase the po- o e, @)
tential walls and to decrease the potential wells of a bare o5 '
jellium system.

Below we use a notation in which a point inside the two-
dimensional regiorf) is denoted by and a point outside the
region() in region{Qg or ; byr.. A point on the boundary
dQ isr_ and a point o QR is rg.

o

) (arb.units)
1)
[6,]

R(G

B. Green’s functions in electronic-structure calculations -1

We use Green’s functions in calculating the electronic -
structure and the current under an external bias voltage. Th TR 20 40
theory is explained in more detail in Refs. 1 and 5. The
electron density is calculated from the Green’s funct@n. 0
In order to obtainG™= one has to solve first for the retarded ‘
Green’s functionG'" from _ i ' b)

50 60

[o—H(r)]G(r,r';w)=8(r—r"), (2)

where w is the electron energy anid is the DFT Hamil-
tonian of the system,

3(G") (arb.units)

H(r)=—3V2+Ver(r). )

In this caser is a two-dimensional variable. Its components _%'3>
along and perpendicular to the leads mendy, respectively. .
G' is zero on the boundaries parallel to the letmt= Fig. L y @)
If w is smaller than the bottom of the potentidl;; in the
lead Eq.(Z) gives (_expone_ntlally d_ecaylng solutions the_re. FIG. 3. Real(a) and imaginary(b) parts of the Green’s function
Otherwise the solution oscillates with a very slowly decaylngGr , . S ) = ,
. P - (r,r’) for a wuniform jellium wire. r=(x,y) and r

amplitude to the _|nf|n|ty. In order_to ensure this propedty — (21.6,15.4)(the position of the pole
has a small imaginary pa&i=w’ +i 7. i 7 takes also care of
separation between retarded and advanced Green'’s functions.
In final resultsp—0, . iFg=3r—33=2i Im(2R). (6)

The form of G'(r,r’) in a uniform jellium wire is shown
in Fig 3. The real part has a poleratr’, while the imagi- . , .
narygpart behaveg smoothlypeverywhere. This is Wﬁy tth/R are the self-energies for the advanced Green’s function

a_ n=* H H
imaginary part is much easier to approximate numericallyG =(G")”. One can then write the electron density as the
than the real part. sum of the electron flows from the leads to the regf®n

In equilibrium, when the Fermi functions 0, and Qg using

are identicalf (w)=fg(w), we obtain
G=(r,r";0)=2f jr(w)G'(r,1'"; 0). 4 G<(r,r';w)=—ifR(w)f f G'(r,rr;@)lr(rg,rg;o)

. L . . . MR J IR
This equation is also valid under a bias voltage at enexgies
for which f, (w)=fg(w) (in practice,f ,g=1 for those en- XGA(rg,r';w)dredrg
ergies. If Eq. (4) is not applicableG= has to be calculated
in amore complicated way. Equati¢?) can be reformulated —if L(w)J f G'(r,r ;) L (r 1] ;o)
using the so-called retarded self-energies of the leads, aQ J o

r

and, as XG(r{ 1" w)dr,dr, U

[0—Ho—3 (0)—3K(0)]G'(r,r;0)=8(r—r'). (5)
. wherefg, are the Fermi functions in the right and left leads.
Above, Hg is the Hamilton operator for the isolated central This equation has to be used in nonequilibrium situations
areal). In practice,2 ;g can be calculated from the bound- whenfg#f, .

ary conditions for the Green’s functions &, /r. X g are Equation(7) corresponds to the electron density due to
functions with nonzero values only at the bounda#ifs )r.  the states extending to infinity in the leads. Equatidh
Next we define the functionE, ,r as includes also the electron density of possible bound states,
which are localized nea®) and decay exponentially in the
iT =3 -3=2i Im(Z)), leads.
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C. Electric current

The electric current is also calculated using the Green’s
Cr functions. The electron-tunneling probability through the
¥ central region is obtained from

Imag(w)

C
X T(w)=f J J f CL(ro,r;0)G'(r] ,rg;)
Real(w) o0 J o JaagJ a0g
| |

. fr XTR(rg,Mg;@)Grk,r ;w)dr drdrgdrg, (9)

FIG. 4. Integration path used in E(). and the total current is calculated integrating over the energy

o and taking care of the electron occupations in both leads.
In order to calculate total electron density we integrateln the effective atomic units the result is
over the electron energy,

1 1o
= —f T(@)[f()~fa(@)]do. (10
—1 0 ) —x
P(r):EJ_w Im[G=(r.r0)]do. ®

Ill. FINITE-ELEMENT METHOD FOR SOLVING

. . . . GREEN’'S FUNCTIONS
We use both equationg) and(7) in this integration. Equa-

tion (4) is analytic in the upper half of the imaginasyplane A. Variational formulation

whereas Eq(7) has poles below and above the reabxis. The most demanding computational task is to find the
Thus, using Eq(4) it is possible to transfer the integral path Green's function at different energies as presented above. To
from the real axis to the complex plane. Our integration pathpjs end, we first divide the domain of the problem into two
is shown in Fig. 4. The first part is a semicird® in the  gisjoint parts, the computational domaih and the exterior
complexw plane using Eq(4) and it takes care of the pos- gomain Q°. Only the computational domain is discretized
sible bound states below the energy bands of the leads. Thgnereas the exterior is taken care of by the corresponding
rest of the integratiorC,, is close to the real axis and there Green's functior(see below Sec. Il B First, we cast Eq(2)
Eq.(7) is used. On the semicircle only few integration pointsjnig a variational, or weak, formulation for the domdin

are needed because the rapid variationofare smeared pyring the derivation we frequently make use of the Green’s
out when the integration leaves the real axis. This is speciallygrmula

useful for the bound states, which give rise to sharp peaks
near the real axis.
Computationally, it is faster to solve f@< from Eq.(7) J' Vu~Vvdr=f a—uvds—f oV2udr (11)
than from Eq.(4). Equation(4) results in the inversion of the Q 0dn Q '
entire matrix, because one need¥r,r’) in all the discre-

tion points of Q. Electron density in Eq(8) is calculated valid for a large class of functions, see Ref. 24. Abowe,
using the diagonal entries of the imaginary partdenotes the outward normal &f, and the line integration is
Im[G'(r,r)]. Inversion of the matrix using direct sparse rou-taken in the counterclockwise direction around the 2D area
tines from HSL(Ref. 23 occurs as follows. First one per- ().

forms the symbolic analysis and factorization to produce an To proceed, we multiply Eq2) by a sufficiently smooth

ordering that reduces the fill-in. After that a numerical fac-functionv and integrate the resulting identity ov@r giving
torization with pivoting is performed producing the Cholesky

factor of the matrix. The set of linear equations with different
right-hand sides are solved. The number of equation is equal f v(ND[w—H ()]G (r,r';w)dr
to the dimension of the matrix. Equatid) needs only the Q
Green's functionsG'(r,r’) for r’=r ;g on the boundaries 1
9 r. This means that after factorization one has to solve :f v(r)(—VZG’(r,r’;w)+[w—veff(r)]
for a set of only as many linear equations as there are dis- Q 2
cretization points o} g.
For 2D systems the use of E@l) is justified because the X G (1 ,;w)} dr
analytic continuation of the integrand reduces the number of
points needed in the numerical integration of E§. and
because the discretization error is smaller for @ythan for = j v(r)s(r—r’")ydr=ov(r’). (12
Eqg. (7). Namely, only the imaginary part &' is used in Eq. Q
(8) so that the pole of R&') does not cause any major
numerical problems if Eq4) is used. The use of the Green’s formula of E4.1) gives
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ary conditions a$s', i.e.,u(r.)=0, whenr e aﬂpl,pz and

1
J v(r)=V2G'(r,r'";w)dr
Q 2

lim  |u[=lim __[Vu[=0, we can write
Lo 1.
— | Vo) 3VG (11 w)dr f U3 Vg et iw)dr,
@ o
f 190G (ry,r’ )d 1
+ 3QLU(rL)_ anL r. =—fQLEVu(re).Vge(re’re;w)dre
190G’ (rR, Tw) ot
+ - ——————drg. 13 1 00e(ri,fei@) |
LnRv(rR) ang R (13 +J'QL§u(rL)—(9 (_e dr

Thus, the original problem of Eq2) is equivalent to the

. 1
formulation :f Ege(reyré;w)vzu(re)dre
Q
1
—Vou(r)-=VG'(r,r'";w) 1 dge(r| 1L w)
fn[ 2 +f —U(r[)ge(L—,edr[
a L2 ang
Fo(N[e—Vei(r)]G (r,r'" o) dr 1 4u(r])
_f 2 J ge( L e!w)er1 (17)
o n
+J 10G"(r. r';m) q
mLE 0—,—nLU(rL) r. so that
r /. ~
+J LIGURITO) dramu(r),  (14) u<rg>=fﬂ GelTe Toiw)[@—F(re)]u(rodr,
902 INR L
for any sufficiently smooth function. +J Eu(r,)ﬁge(rﬁ Sei) dr!
In order to obtain a solvable system, the boundary condi- 90, 2 L an| L

tions must be supplied at the boundarié¥, anddQg. For

conciseness we discuss only the casé(@f , the other case _J’ 1 du(r{) (r! 1l w)dr! (18)
dQr being similar. Consider the exterior problem 2 on/ oy JellL e L
[o—H(re)lge(re.ri;0)=8(re—rl), rieQ, Takingu=G" we have thaf w—H(r¢) ]G (re,r’;»)=0
forree O andr’ € Q. Since in additiorg,=0 ondQ, we
Oe(re.re;®)=0, reedQ ,dQpyps, (15  have by Eq(18),
for the Green’s functiong), of the semi-infinite lead. 1 ) 99e(r| Tei®) |
boundaries)Qp1p, e has the same boundary condmons as G'(re.r’ w)=jﬂ ZG'(rL ,r’:w)Tde,
G'. The boundary condition in{), makes equations below M -
5|mplle(, although it is possible to write them without this rleq,. (19
restriction.
It follows that any sufficiently smooth functiom can be  Now the representation formuld9) can be used to supply
written in the form the boundary condition to Eq14) (see Ref. 2k
Differentiating Eq.(19) with respect tor, and lettingr;
"o S(ro—rd —r e dQ) we obtain the term corresponding to the left
utre) fQLu(re) (Fe—re)dre boundarydQ, in Eq. (14) as
~ 190G (r. r';m)
= u(r —H(r e ,lo;w)dr I L A
[, utrato- A adra rgiwar. [05 = m uran
1 ’ (r ’ 1 )
ZJ u(re)(zvzge(re’re;w) f f 76" 0)——————— Pelri v(ry)dr/dr,
Q o0 Jao 4 an an|
— r
+[w—veff<r>]ge<re,rg;w>jdre (16 (316"0). 20

It is possible to make the similar derivation for the right lead
for rye Q. Using the Green's formuléL) for the exterior  to obtain (SgG',v). The terms(3,G',v) and (SgG',v)
domain(}, twice for functionsu satisfying the same bound- which set the boundary conditions are the ones which make
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difference betweerH and the isolated Hamiltoniai . 1 1
When we compare Eqg5) and (14) we see that we have
derived here the variational form for the self-energy operator 0.8 ‘\ /os
3, . It includes line integrals over the boundaf§), to- Q@ " /’ =
gether with a trace mapping from functions 6h to the “’00.6 \\ K 06 =
functions ondQ}, . The functionX| in Eq. (6) is given by > '\ ,.’ =
@ p ; g
S Y ' ]
. 1 9°ge(r{ 1L 0) 504 . ! 0.4 2
S(rer)=g——— (21 ) ' H =
4 anong & ' , 3]
£0.2 £
&) ‘ w
with zero extension outside the bounda, . \
The mapping generated above by ERO) is called the 0
Dirichlet-to-Neumann mapping since in general it maps the

Dirichlet datumu of a solution to a partial differential equa- 0 2 4 a8 8 10
tion to the corresponding Neumann datdoy on.

FIG. 5. Electron densitysolid line), positive background charge
B. Exterior Green'’s function (dotted ling, andV;¢ (dashed lingfor an infinite uniform wire.

The exterior Green’s function for the semi-infinite leads
can be calculated numerically as the surface Green’s function
of a periodic system?® In the present work the potential is C. Finite-element discretization
uniform in the leads anng the lead axis. Therefore we can To obtain a numerical approximaﬁon for the Green’s
solve for the isolated Green's function using the analyticfunction G' in the computational domai) we select a
one-dimensional solution along the lead and the numericajnite-dimensional spacé&, defined onQ and project our

transverse wave functiong(y).* The ensuing exterior problem of Eq.(14) into S, by solving forG},e S, such that
Green’s function for the quasi-two-dimensional semi-infinite

wire is
f [ 1VGr \Y
® o -3 rro): r
g _ 2 IXm(y)Xm(y )(eikm(X*X’)_eikm(X+X’)) a 2 h( (U) Uh( )
e = km ]
@2 +[0—VerdNIGH(T . iw)oy(r) {dr
where y(Y)’s are solutions to the Kohn-Sham equation ~ .

+(ZLG,vn) +(ZrGh.un) =vh(r’) (25

1
( _EVZ_Veff(y))Xm(Y):eme(Y)v (23 2% ) o )
for everyvne S, .“° A matrix equation is obtained by select-
with ing a basig ¢;}\; for S, and expandings}, in the basis,
km=V2(0—€n). (24)

N
Ganr1§1%¢mm@u». (26)

We solve Eq.(23) using self-consistency iterations for the

electron density and the potential profié(y). As ex-

plained before we use a model in which the positive charge . ) i

forms a thin wire and the electron wave functions spread oud€lectingun= ¢y in Eq. (25) we obtain

of this charge. The effective potentisl.;; consists only of

V,.andV., and no external potential is applied. In practice N

the summation in Eq(22) is truncated typically after a few E

tens of states so that the results are well converged. i =
The charge densities resulting from this calculation are

used in the boundary conditions when calculating the Cou-

lomb potential of the nanosystem. The total charge per unit TLo—Ver(r)]1i(r) dy(r)

length is zero in an infinite wire, but there are local varia-

tions in the charge density in the transverse direction. As an 4 ,

example, we show in Fig. 5 the effective potential and the +{(Zrdi '¢’k>] = (1) 27)

positive and negative charge densities in a case with two

transversal modes in the wire. A cut perpendicular to the wire

axis is shown. Denoting

r ! 1
19n%ﬂ)(LL—EV@U%V¢MH

dr+ (S ¢, i)
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1
aik= —§V¢i(r)'v¢k(r)
Q

Hw—Ve(r)]di(r) dy(r) |dr

+(SLi i)+ (Sredi b, (28)
and
mkI:fnd’k(r,)d’l(r/)dr,v (29
we have that
N
> g1 M =M . (30

ihj=1

Exploiting the symmetry of the coefficients; we see that

gij's are the entries in the inverse of the matrix given by Eq.

(29).
We connec i to the discretized forms as
EL/R,i,j:<iL/R¢’i b)) (31
Further, let us denote

A= GkAdn () (32

and
Tur=2 Im(3]q), (33

with
[yriij :<1:L/R¢i ) =TURji (34

sinceI' ;g is symmetric. Now, for example, the electron-

tunneling probability of Eq(9) can be written in the dis-
cretized form as

T(“’):ié=l Jo Lo o | rerrogianrie

X (rr)TR(rR,rR)GR dK(rR) ¢ (r)dr dr dredrg,
N

= > (fL¢i,¢|>girj<1:R¢k,¢j>gek‘|

ijiki=1
N
= E FL,IigierR,jkgEI' (35
ij,klI=1

D. Finite-element basis
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(==

FIG. 6. Alinear basis functiog. The function is one in a given
mesh node and descends linearly to zero in the adjacent nodes.

Q) is partitioned into a simple mesh df nodes and poly-
gonsT; conforming to the usual requirements imposed on a
finite-element mesh. These polygons can have a variety of
shapes but the simplest choice of triangles in tand tetra-
hedral in threg dimensions will serve our purposes. We
choose the basis functior’s to be element-wise linear func-
tions that have the value 1 in a single node of the mesh and
0 in other nodes(see Fig. § The corresponding finite-
element spac§, is

N
Sh=’vh=_2 cidilc ECJ ={vne C(Q)|vpr, e Pu(TH},
(36)

i=1

where C({)) denotes the set of continuous functions(in
and Py(T;) is the set of polynomials of degree one in the
polygonT,;.

An element-wise polynomial basis has several advan-
tages. First, polynomials are fast to evaluate and they can be
integrated exactly on a suitable reference element. Second,
the piecewise nature allows the use of a local basis ensuring
that the matrix aij)iN’j:l is very sparse. Third, the accuracy
of the discretization can be controlled via mesh refinements
and coarsening.

The local nature of the basis functions gives rise to a
sparse matrix. Due to recent developments in linear algebra
there are fast direct solvéfs(also parallef®?° for sparse
systems arising from discretization of partial differential
equations. Since we must solve for all the coefficiegitsof
the approximate Green’s functiay, we are faced with the
problem of solving\ linear systems with different right-hand
sides. This kind of setting is favorable to direct methods over
iterative ones. Nevertheless, the computation itself is a time-
consuming procedure and cannot be substantially accelerated
with the techniques known today.

E. Mesh generation

An important property affecting the quality of the finite-
element approximation is the underlying mesh and especially
the shape and the size of individual elements. Several tech-

So far we have not touched the subject of selecting th@iques for mesh generation in two and three dimensions are

basis functionsp; in Sec. 11l B above and thus the spaSg.
In principle, we could select any computable $et}". ,,

available. All the techniques have in common that they try to
produce meshes with elements of desired local size and high

but adhere to a traditional choice in the finite-element pracquality. There are also several indicators for evaluating the
tice, namely, to the set of piecewise polynomial functions.quality of the shape of a single element. Perhaps the most
The basis functions are constructed as follows. Assume thatommon is to require that there are no large angles in the

115325-7



P. HAVU, V. HAVU, M. J. PUSKA, AND R. M. NIEMINEN PHYSICAL REVIEW B69, 115325 (2004

element. Typically, the larger the maximal angle of an ele-
ment is, the worse the resulting approximation will be.

In this work we use Delaunay mesfi&for triangular el- 0.9r
ements in two-dimensional problems. They are known to be o.8}
very robust in producing high-quality triangular meshes for |
different shapes of domains. A Delaunay mesh can be charg
acterized as follows. A mesh consisting Mfnodes andvi 06}
triangular(or tetrahedralelements satisfies the Delaunay cri- cci» 0.5}k
terion if the circumscribeC; of a triangle(or tetrahedronT; =04l
of the mesh contains no nodes of the mesh. Meshes satisfyg '
ing the Delaunay criterion are called Delaunay meshes.  =0.3f

It can be shown that for a given set of points in a plane a g}
Delaunay triangulation always exists and is even unique with
a minor assumption on the placement of the nodes. Further
more, among all triangulations of the nodes, the Delaunay 0f® ) )
triangulation maximizes the minimum angle present in the 05 1 1.5 2
triangulation. The max-min property can be usually consid- Electron energy (Ha)
ered as a guarantee of high-quality elements. o o ) ,

Unfortunately the Delaunay criterion is not sufficient for a FIG. 7. Transmission probability over a potential well. The solid

high-quality tetrahedral mesh in three dimensions. This ié":ee gz;éﬁfa?;gdjsticrzg;hti:nFallz);\j:cci?jhem?r? tc;]fifaéi)lcaur;gﬂ:;: 1%';965
due to the presence of “slivers” in Delaunay meshes. Thes%0=l Hat, the width of the wireW=3aZ , and the average dis-

eIenjents: can havg_ very large angles de}enoratmg the AR ce between the FEM mesh nodes0.3a
proximation capabilities, and yet they satisfy the Delaunay
property. Therefore alternative techniques must be sought for
when producing meshes in three dimensions. Typical apiriangle to a square in which the pole disapp€4téthe pole
proaches use a mixture of different methods, e.g., octrels inside an elementin the L, projection it i9 the same
methods, advancing front methods, and Delaunay methodsmapping works again. In this case the element is divided into
However, it should be noted that the quality of the result-three smaller ones, with” being an interior node.
ing mesh produced by a mesh generation algorithm depends
heavily on the shape of the domain to be meshed. Very
simple domains such as cubes and other rectangular domains IV. TEST SYSTEMS
are usually well treated by virtually any method, whereas —riq section is devoted for testing and demonstrating our
more complicated domains having holes and cuts need mOtg.heme  First the transmission probability over a given po-
attention. tential well and through a given bottleneck potential are de-
termined. The aim of these non-self-consistent calculations is
F. Coulomb interactions to provide, through the comparison with the exact results, an
The effective potential is also calculated using the FEMIde@ Of the numerical accuracy of our methods. Thereafter
and the same mesh as for the Green's functions is t4gd. W€ demqnstrate the p035|b|l_|t|es of the scheme by solving
is simply evaluated in every node point. The potential Chargéelf-coq3|stently the ele.ctronlc structure and the current un-
densities are two dimensional but the Coulomb is treated if/€" @ bias voltage for different resonant tunneling systems.
three dimensions. In this case it is not efficient to solve for
the three-dimensional Poisson equation, but to evaluate the

lin

0.1F

A. Transmission probability over a potential well

integral
Basic quantum mechanics gives the transmission prob-
"N , ability over a potential wellsee the inset in Fig.)7as
p(r')=pp(r’) |
V(r)= ﬁdr . (37
r—r
V2si[V2(w+Vo)L]] *
Above, p is the electron density angl, is the positive back- T(w)=21+ 0 o (38

ground charge density. In this work we have linear basis dolotVo)

functions, so that we can calculate E§7), r’ being sepa-
rate at each node points, and extrapolate the result to thghereV, and L are the depth and the length of the well,
other points. The extrapolation essentially gives the sameespectively, andw is the electron energy. Our numerical
solution as the., projection of Eq.(37). approach obeys this result accurately. For example, Fig. 7
The integral is evaluated by integrating basis functions ingives the transmission probability calculated using E§5.
every element. For elements with no poteig not inside the and (35) for a narrow wire with a potential well. For the
element, the integral is evaluated using the Gaussianenergies shown there is only one transverse mode in the
quadrature rules for triangléS.Elements which have in  wire. The good agreement between the numerical and ana-
one corner are evaluated by making a mapping from théytic results indicates that the FEM mesh is fine enough.
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FIG. 8. Bottleneck model potential. The potential is constant Electron energy, » (Ha )
inside the leads and in the bottleneck between the leads. At the
boundaries the potential rises to infinity. The dimensions lare 4
=H=10a; and W=30aj . The length of the calculation arez 35 b
=30ag . The FEM mesh shown has smaller elements near the
boundariesQ)| g - = 3t
] "
82.5; ™
[=% " [
S 2 Y arold ‘\\
B. Transmission probability through a bottleneck potential _g1 5 ! ‘\\
. e l.or ]
Next we study how the FEM node density affects the ¢ 1 \\
results. We calculate the electron transmission probability as l‘_s‘-’ 1 Y
a function of energy using different FEM meshes. Our scat- 0.5t .
tering potential is a bottleneck shown in Fig. 8. The electron ) \\
transmission probability is shown in Fig. 9 as a function of 0 L L e "
0 0.5 1 16 , 2 25

the energy. Stepwise jumps in the transmission probability
mean that new transverse modes emerge with increasing en-
ergy . The narrow peaks near the beginning of each step FIG. 9. Electron transmission probability as a function of the
correspond to the constructive interference of the incidengnergy for different FEM meshe&) All the elements in each cal-
wave with the wave reflected twice at the lead-bottleneckulation are of the same size. The FEM node distaneelag
boundaries® Increasing the energy means making the elec{solid line), h=2a} (dashed ling andh=23a} (dotted ling. (b)

tron wavelength shorter so that more points are needed fbhe elements are smaller near the bounda#@s,; (see Fig. 8
describe the wave functions. Thus, with a fixed element siz&he minimum distanceh,;,=1a§ and the maximum distance

h it is possible to characterize transversal modes up to 8max=2ag (solid line) andhy,,,=3a; (dashed ling

certain energy only. Thereafter the transmission probability

collapses due to the loss of numerical stability.

In Fig. 9(a) the size of the elements in each calculation isa large numerical error propagating to the elements needed in
the same throughout the whole calculation area. According tgq. (9).3* In Fig. 9(b) the number of points at the boundaries
the two uppermost curves corresponding to the FEM nodgq,  is larger than inside the calculation at®a The figure
distancesh=1a; andh=2ag, we need about four nodes shows that the effects of the discretization errors are now
between the adjacent zero-value lines of the electron wavstrongly reduced at low energies, but the transmission prob-
function. This means that the FEM node distancehof ability at high energies collapses as fast as in Fig. 9. In con-
=3ag should give a reasonable result for the first transversatlusion, when one wants to describe the transmission prob-
mode. In contrast, the results show large oscillations of theability only up to a certain energy value, the optimum way to
transmission due to discretization errors. The reason for thishoose the sizes of the elements is to use smaller elements
is that the pole of the real part of the Green'’s function is notnear the boundarieg(), ,z than inside the aref. In this
approximated accurately enough. When determining thasimple test system the bottleneck potential is relatively wide,
transmission the arguments of the Green’s function are obut if the bottleneck is narrow in comparison with the rest of
the opposite boundarid€qg. (9)]. These Green's-function the wire, it is reasonable to refine the mesh also in the neck
values are calculated by solving a linear equation problem imegion. Finally, the above refinement is also needed when
which one of the arguments &"(r,r’) is fixed, e.g., on the calculating the electron density in nonequllibrium using Eq.
left boundarydQ), and the other argument runs over the (7). The real part ofG'(r,r’) is needed between a point on
central region to the right bounda#f)y. If the FEM mesh the boundarydQ) g,and an arbitrary point in the central
is not dense enough near the left boundary where the pole region(}.

Electron energy, ® (Ha )
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FIG. 10. Double-barrier potential systerf®) The model. The
gray areas correspond to the positive background charge. At the
gaps there is an additional potentig)=2 Ha*. The size of calcu-
lation areaQ) is 29x5(ag)?, the width of the background charge
W=3aj, and length of the quantum dat=9aj . Case A has
LYR=1a% and case B./R=1.2%% . The number of FEM nodes
used in the calculations is 2108) The total electron density at
zero-bias voltage for case A.

Induced potential (mHa*)

C. Resonant tunneling through double-barrier

potential systems _400 5 10 + 15 20 25

x (a,)

1. Symmetric barrier system

In this section we demonstrate the potential of our scheme FIG. 11. Double-barrier potential system &) The zero-bias
by showing results of self-consistent electronic-structure calvoltage effective potential along the symmetry axis. The energy
culations for 2D nanostructures under a finite bias voltageZe™ corresponds to the bottom of energy band in an infinite 2D
We restrict ourselves to zero-temperature calculations. TheyStem with the electron density of 0z3)°. The Fermi level is
test system is a double-barrier potential structure, a schenoWn by the dashed linéb) The change oWy due to bias volt-
matic sketch of which is shown in Fig. @@. A jellium wire ~ 29¢: In the upper panélVyias=0.03 Ha (0.36 meVf and lower
is cut by two vacuum regions and additional potential barri—panelAVbiaS:0'06 H& (0.71 meV.

ers are introduc_ed_within them i.n order to adj_ust the potentia!ind that of the left lead decreases. The chang¥ f for
and the transmission. We cR:/cinS|der two special cases. Cased%se B is shown in Fig. 1)). The maximum bias voltage
heRllsLthmner potential wallsy,~=1ag than case B for which 55l is small in comparison to the barrier heights. The
Ly =1.255 . This difference means that the connection topotential drop occurs between the potential walls, not in the
the leads differs remarkably in its strength. We make contageads. This is expected because the leads are ballistic, with
with real semiconductor systems by converting our result$,g scatterers at all. At small V. values the potential in
from the effective atomic units to the Sl units using the ef-the quantum dot stays at the level of the potential in the left
fective mass of electrons* =0.067 and the dielectric con- |ead. This is seen in the upper panel of Fig(1When
stant e=12.4 for GaAs. Thenag=9.779 nm and 1 Ha AV, is large enough the potential in the dot rises close to
=11.8672 meV. The positive background charge densitghe mean value in the leadsee the lower panelA nearly
0.2(a) ?~2x 10" m 2 corresponds to a reasonable elec-inversion-symmetric potential develops. In case A the poten-
tron density at the GaAs/AlGaAs interface. The ground-stateial in the quantum dot develops differently. It follows
electron density of the double-barrier system is shown in Figmainly the potential level of the right lead for all bias volt-
10(b), exhibiting Friedel oscillations in both leads. The wires ages studied.
are so thin that only one transverse mode is occupied. The behavior of the potential level in the quantum dot is
The effective potential along the symmetry axis of theconnected to the occupation of the dot resonance state and its
double-barrier system at zero-bias voltage is shown in Figposition relative to the lead Fermi levels. Figure 12 shows
11(a). The potential barriers are so small that the quantunthe local density of stated DOS) calculated by integrating
dot is strongly connected to the leads. When we add the biasver the quantum dot area. For the zero-bias voltage, both
voltage to the system, the potential of right lead increasesases, A and B, have a resonance peak below the Fermi level.
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0.4 _o 2 ectron energy, @ (meV) | 04 FIG. 13. Current as a function of the bias voltage for the double-
4000k b). ' ) ) barrier potential systems shown Fig. 18). Case A with the barrier

width of 1aj . (b) Case B with the barrier width of 1.2% . The
2000} : zero-bias conductivities of case A and B are 0Gg@nd 0.01%,,
respectively.

case B because the connection to the leads is stronger. The

)
.‘é’

=}

£

8

g4000r wide resonance enters the bias window at a low bias value
2 5000h ] and its position follows the Fermi level of the right lead.
_f:; Then the bias-induced charge redistribution takes place at the
g o0 . . . . . . left barrier and the potential level in the dot follows that in

e . . . . . the right lead. The asymmetric behavior of the voltage drop
8 4000} . in our model systems has analogies with the case of atomic

chains between two electrod®s.
The position of the resonance peak relative to the Fermi
ol . N ; . ; ; . levels has a large effect on the electron transmission prob-
059 06 o061 062 063 064 065 066 ability through the double-barrier potential system. The cur-
Electron energy o (Ha ) . . . .
rent flow is due to the states with energies between right and
FIG. 12. LDOS in the region between the barriers shown in Fig |eft Fermi levels, i.e., in the bias window. When the reso-

10. () LDOS for case A with narrow barrier¢b) LDOS for the ~ nance peak moves into this region there is a steep increase in

case B with wide barriers. The vertical lines denote the Fermi levefhe current. Thereafter the current stays approximately con-

position in the leads. Both irfa) and (b) the uppermost panels stant as a function of the bias voltage. This characteristic

correspond to the zero-bias calculation, the middle panels t®ehavior of the double-barrier potential is visible in Fig. 13.

AVy,i.s=0.03 H&, whereas the lowest panels correspond toCase B with the sharper resonance peak has a steeper raise of

AV,;,s=0.06 H& . the current than case A. Moreover, the raise occurs at a
higher bias voltage in case B than in case A.

20001

When the biaf\ V45 is applied the potentials and the Fermi
levels are shifted by+ AV, and —3AVy,,6 in the left
and right leads, respectively. This defines the so-called bias So far both the potential barriers in the system of Fig.
window on the energy axis. At smallV,,;,s the value of the  10(a) have been identical. Inspired by the prospect to use
resonance peak to case B moves down in energy. The respensymmetric molecules as rectifiéhd’ we have studied
nance, which gives a large contribution to the charge in th@lso double-barrier systems with nonidentical barriers. The
dot, is below the left Fermi level. The bias-induced chargezero-bias conductivities of the cases A ansBe Fig. 13 and
redistribution takes place near the left barrier. Thus the poits caption are 0.06G, and 0.01%&,. These are of the same
tential in quantum dot stays at the level of the left lead.order in magnitude as conductivities calculated for molecules
However, whemAV,,, is large enough the resonance peakbetween electrode¥.In the next example we have reduced
enters the bias window, the charge redistribution occurs quitthe height of the second barrier in case A by a factor of 2 in
symmetrically at both barriers and the potential level in theorder to create an asymmetric system.

guantum dot is in the middle between the left and right lead The ensuing current-voltage curve is shown in Fig. 14.
levels. The resonance peak of case A is wider than that ofhe curve is asymmetric with respect to the direction of the

2. Asymmetric barriers
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system with asymmetric barriers.
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applied bias. The double-barrier system shows a clear recti- FIG. 15. LDOS for the double-barrier potential system with
fication effect resembling that for asymmetric molecularasymmetric potential barriers. The LDOS corresponds to the quan-
wires®” The reason for the rectification effect is seen in thetum dot region between the barriers.

LDOS in the quantum dot given in Fig. 15. When the bias . _ . -
over the system is zero a resonance peak is below the Fer?pd the discretized forms of physical quantities such as the

level as it was in the previous cases A and B. For positiv un?:g';ggv\ﬁ:ﬁbr?]%'gg' otential svstems show the numerical
bias voltages(the potential is higher in the lower-barrier P y

side the resonance peak moves in enerav and the res@ccuracy and its dependence on the finite-element mesh cho-
! . . b VES up | gy an Len. Especially, we show that for efficient accurate calcula-
nance is emptying of electrons. This causes the increase

th ductivity. In th f tive bi It tibn it is important to refine the mesh near the boundaries
€ conductivity. In th€ case of negalive bias vo agee between central region and the boundaries. Self-consistent
potential is higher in the higher-barrier sjdine resonance

. . calculations for resonant tunneling structures demonstrate
peak follows the Fermi energy of the lower-potential lead. -
The situation is similar to that of svstem B ab t low bi the efficiency of the scheme.
€ situation 1S simifar fo that of Ssystém b above al low DIas. v paye treated systems with up to 10000 degrees of

The resonance does not enter the bias window as fast as ffeedom. Three-dimensional atomistic systems described by

the case of the positive voltage and the current increasgg,, pseudopotentials would need roughly one order of mag-

slowly. nitude more degrees of freedom which is with in present-day
computational capabilities. The present two-dimensional
V. CONCLUSIONS work is an important step in the development towards three-

We have developed a computational scheme to modé}flmensmnal atomistic modeling of nonequilibrium transport
in nanoscale devices.
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