509 research outputs found

    Investigation of defect cavities formed in three-dimensional woodpile photonic crystals

    Get PDF
    We report the optimisation of optical properties of single defects in three-dimensional (3D) face-centred-cubic (FCC) woodpile photonic crystal (PC) cavities by using plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods. By optimising the dimensions of a 3D woodpile PC, wide photonic band gaps (PBG) are created. Optical cavities with resonances in the bandgap arise when point defects are introduced in the crystal. Three types of single defects are investigated in high refractive index contrast (Gallium Phosphide-Air) woodpile structures and Q-factors and mode volumes (VeffV_{eff}) of the resonant cavity modes are calculated. We show that, by introducing an air buffer around a single defect, smaller mode volumes can be obtained. We demonstrate high Q-factors up to 700000 and cavity volumes down to Veff<0.2(λ/n)3V_{eff}<0.2(\lambda/n)^3. The estimates of QQ and VeffV_{eff} are then used to quantify the enhancement of spontaneous emission and the possibility of achieving strong coupling with nitrogen-vacancy (NV) colour centres in diamond.Comment: 12 pages, 11 figure

    Chronic Thromboembolic Pulmonary Hypertension - What Have We Learned From Large Animal Models

    Get PDF
    Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in a subset of patients after acute pulmonary embolism. In CTEPH, pulmonary vascular resistance, which is initially elevated due to the obstructions in the larger pulmonary arteries, is further increased by pulmonary microvascular remodeling. The increased afterload of the right ventricle (RV) leads to RV dilation and hypertrophy. This RV remodeling predisposes to arrhythmogenesis and RV failure. Yet, mechanisms involved in pulmonary microvascular remodeling, processes underlying the RV structural and functional adaptability in CTEPH as well as determinants of the susceptibility to arrhythmias such as atrial fibrillation in the context of CTEPH remain incompletely understood. Several large animal models with critical clinical features of human CTEPH and subsequent RV remodeling have relatively recently been developed in swine, sheep, and dogs. In this review we will discuss the current knowledge on the processes underlying development and progression of CTEPH, and on how animal models can help enlarge understanding of these processes

    Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals

    Get PDF
    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high index cavities.Comment: 7 pages, 8 figure

    Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Get PDF
    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed

    Orthodontic tooth movement in the prednisolone-treated rat

    Get PDF
    Adverse effects of corticosteroids on bone metabolism raise concerns as to whether steroid treatment may influence orthodontic movement. This study examined the effect of prednisolone on orthodontic movement using an established rat model. The corticosteroid treated group (N = 6) was administered prednisolone (1 mg/kg) daily, for a 12-day induction period; the control group (N = 6) received equivalent volumes of saline. On day 12, an orthodontic appliance was placed which exerted 30 g of mesial force to the maxillary first molar. Animals were sacrificed on day 24 and tooth movement was measured. Sagittal sections of the molars were stained with haematoxylin and eosin, and for tartrate-resistant acid phosphatase (TRAP) activity. While there were no significant differences in the magnitude of tooth movement between the 2 groups, steroid-treated rats displayed significantly less root resorption on the compression side and fewer TRAP-positive cells within the PDL space on the same side. This suggests steroid treatment suppressed elastic activity

    Identification of Atrial Transmural Conduction Inhomogeneity Using Unipolar Electrogram Morphology

    Get PDF
    (1) Background: Structural remodeling plays an important role in the pathophysiology of atrial fibrillation (AF). It is likely that structural remodeling occurs transmurally, giving rise to electrical endo-epicardial asynchrony (EEA). Recent studies have suggested that areas of EEA may be suitable targets for ablation therapy of AF. We hypothesized that the degree of EEA is more pronounced in areas of transmural conduction block (T-CB) than single-sided CB (SS-CB). This study examined the degree to which SS-CB and T-CB enhance EEA and which specific unipolar potential morphology parameters are predictive for SS-CB or T-CB. (2) Methods: Simultaneous endo-epicardial mapping in the human right atrium was performed in 86 patients. Potential morphology parameters included unipolar potential voltages, low-voltage areas, potential complexity (long double and fractionated potentials: LDPs and FPs), and the duration of fractionation. (3) Results: EEA was mostly affected by the presence of T-CB areas. Lower potential voltages and more LDPs and FPs were observed in T-CB areas compared to SS-CB areas. (4) Conclusion: Areas of T-CB could be most accurately predicted by combining epicardial unipolar potential morphology parameters, including voltages, fractionation, and fractionation duration (AUC = 0.91). If transmural areas of CB indeed play a pivotal role in the pathophysiology of AF, they could theoretically be used as target sites for ablation

    Does conduction heterogeneity determine the supervulnerable period after atrial fibrillation?

    Get PDF
    Atrial fibrillation (AF) resumes within 90 s in 27% of patients after sinus rhythm (SR) restoration. The aim of this study is to compare conduction heterogeneity during the supervulnerable period immediately after electrical cardioversion (ECV) with long-term SR in patients with AF. Epicardial mapping of both atria was performed during SR and premature atrial extrasystoles in patients in the ECV (N = 17, age: 73 ± 7 years) and control group (N = 17, age: 71 ± 6 years). Inter-electrode conduction times were used to identify areas of conduction delay (CD) (conduction times 7-11 ms) and conduction block (CB) (conduction times ≥ 12 ms). For all atrial regions, prevalences and length of longest CB and continuous CDCB lines, magnitude of conduction disorders, conduction velocity, biatrial activation time, and voltages did not differ between the ECV and control group during both SR and premature atrial extrasystoles (p ≥ 0.05). Hence, our data suggest that there may be no difference in biatrial conduction characteristics between the supervulnerable period after ECV and long-term SR in AF patients. The supervulnerable period after AF termination is not determined by conduction heterogeneity during SR and PACs. It is unknown to what extent intra-atrial conduction is impaired during the supervulnerable period immediately after ECV and whether different right and left atrial regions are equally affected. This high-resolution epicardial mapping study (upper left panel) of both atria shows that during SR the prevalences and length of longest CB and cCDCB lines (upper middle panel), magnitude of conduction disorders, CV and TAT (lower left panel), and voltages did not differ between the ECV and control group. Likewise, these parameters were comparable during PACs between the ECV and control group (lower left panel). †Non-normally distributed. cm/s = centimeters per second; mm = millimeter; ms = millisecond; AF = atrial fibrillation; AT = activation time; BB = Bachmann's bundle; cCDCB = continuous lines of conduction delay and block; CB = conduction block; CD = conduction delay; CT = conduction time; CV = conduction velocity; ECV = electrical cardioversion; LA = left atrium; LAT = local activation times; PAC = premature atrial complexes; PVA = pulmonary vein area; RA = right atrium; SR = sinus rhythm; TAT = total activation time.</p

    The right ventricle in tetralogy of Fallot:adaptation to sequential loading

    Get PDF
    Right ventricular dysfunction is a major determinant of outcome in patients with complex congenital heart disease, as in tetralogy of Fallot. In these patients, right ventricular dysfunction emerges after initial pressure overload and hypoxemia, which is followed by chronic volume overload due to pulmonary regurgitation after corrective surgery. Myocardial adaptation and the transition to right ventricular failure remain poorly understood. Combining insights from clinical and experimental physiology and myocardial (tissue) data has identified a disease phenotype with important distinctions from other types of heart failure. This phenotype of the right ventricle in tetralogy of Fallot can be described as a syndrome of dysfunctional characteristics affecting both contraction and filling. These characteristics are the end result of several adaptation pathways of the cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the long-term outcome of surgical correction of tetralogy of Fallot remains suboptimal, other treatment strategies need to be explored. Novel insights in failure of adaptation and the role of cardiomyocyte proliferation might provide targets for treatment of the (dysfunctional) right ventricle under stress.</p
    • …
    corecore