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We report the optimisation of optical properties of single defects in three-dimensional (3D) face-centred-cubic
(FCC) woodpile photonic crystal (PC) cavities by using plane-wave expansion (PWE) and finite-difference
time-domain (FDTD) methods. By optimising the dimensions of a 3D woodpile PC, wide photonic band gaps
(PBG) are created. Optical cavities with resonances in the bandgap arise when point defects are introduced in
the crystal. Three types of single defects are investigated in high refractive index contrast (Gallium Phosphide-
Air) woodpile structures and Q-factors and mode volumes (Veff ) of the resonant cavity modes are calculated.
We show that, by introducing an air buffer around a single defect, smaller mode volumes can be obtained. We
demonstrate high Q-factors up to 700000 and cavity volumes down to Veff < 0.2(λ/n)3. The estimates of Q
and Veff are then used to quantify the enhancement of spontaneous emission and the possibility of achieving
strong coupling with nitrogen-vacancy (NV) colour centres in diamond.

OCIS codes: (160.5298) Photonic crystals; (140.3945) Microcavities; (270.5580) Quantum electrody-
namics; (350.4238) Nanophotonics and photonic crystals.
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1. Introduction
In recent years, there has been remarkable progress in
designing and fabricating three-dimensional (3D) pho-
tonic crystal based optical micro-cavities containing
suitable emitters[1–8]. Such systems show long photon
life times (i.e. high Q-factors) and small mode volumes
(Veff ). The resulting strength of interaction between the
cavity photons and a two-level system leads to dramatic
modifications of spontaneous emission [9–12] and cavity
quantum electro dynamical (cavity-QED) phenomena
[11, 13–16] known generically as strong coupling. Po-
tential applications of these devices include electro-optic
modulators [17, 18], photonic sensors [19, 20], ultra-
small optical filters [21], nonlinear optical devices [22],
ultralow-power and ultrafast optical switches [23], quan-
tum information processing [24–27] and low threshold
lasers[28]. Some of these achievements have been re-
ported using two-dimensional (2D) PC slab cavities [29]
and waveguides [30], which are easier to fabricate and
simulate. However, in 2D PC designs, it is difficult to
design low volume high finesse cavities due to the out-of
plane radiation losses and scattering. In contrast, 3D
PC designs provide stronger confinement due to their
complete photonic band gap [31, 32] leading to smaller
mode volumes thus larger effects with weaker emitters.

∗ Corresponding author: Mike.Taverne@bristol.ac.uk
† Daniel.Ho@bristol.ac.uk
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Recently, several 3D PC structures with complete
PBGs have been simulated and fabricated using two-
photon polymerization (2PP) based 3D lithography or
direct laser writing (DLW) system, with or without
backfilling materials to create 3D high-refractive-index-
contrast nanostructures [33–35]. In this work, we inves-
tigate the potential to create high-Q low mode volume
cavities using the optical properties of single defects in
three-dimensional (3D) face-centred-cubic woodpile[36]
photonic crystal cavities. Analysis using the plane-wave-
expansion (PWE) method has shown a full photonic
bandgap in technically interesting wavelength regions.
We have studied the optimisation of relative gap width
(gap width to midgap frequency ratio) as a function
of the rod width using MIT Photonic-Bands software
(MPB) [37, 38]. Our in-house finite-difference time-
domain software [39] is then used to calculate the time
response and transmission spectrum of the finite wood-
pile crystal structures containing three types of single
defect cavities with and without an air buffer to fur-
ther isolate the cavity. We demonstrate high Q-factors
up to 700000 - limited only by simulation volume con-
straints - and cavity volumes down to Veff < 0.2(λ/n)3.
Our Q-factors are comparable to other reported struc-
tures [40–43], but we note that it is the much smaller
cavity volumes, which are of interest here. These cav-
ity volumes are an order of magnitude smaller than re-
cent woodpile cavity simulations [44] and a factor of four
smaller than nanobeam cavities [40]. By introducing an
air buffer around the defect, even smaller mode volumes
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can be obtained with slightly lower Q-factors. We then
estimate the enhancement of spontaneous emission and
possibility of achieving strong coupling. As an example
system, we use emission rates estimated from nitrogen-
vacancy (NV) colour centres in nanodiamond embedded
in 3D FCC woodpile PhC structures made of gallium
phosphide.

2. Geometry and bandgaps: 3D FCC woodpile pho-
tonic crystal cavity design

2.A. Geometry: Design of the model

We are studying the woodpile structure as shown in fig-
ure 1a. A woodpile structure consists of layers of parallel
dielectric rods, with each layer rotated by 90◦ relative
to the other. Additionally, the layers are shifted by half
a period every 2 layers. This means that the structure
repeats itself in the stacking direction every 4 layers.
We define the period along the stacking direction, corre-
sponding to 4 layers, as c and the distance between two
rods within each layer as a. In our case, the rods have a
rectangular cross-section with a height h and width w.
For a non-infinite woodpile crystal, we also define the
number of layers Nl and the number of rods per layer
Nr/l. In our simulations, to make the woodpile more
symmetric, the number of rods per layer actually varies
from Nr/l to Nr/l + 1.

Depending on the ratio c/a, the woodpile corresponds
to different crystal lattices. For c/a = 1, it corresponds

to a body-centered-cubic (BCC) lattice, for c/a =
√

2,
to a face-centered-cubic (FCC) lattice and otherwise to a

centered-tetragonal lattice. Here we chose c/a =
√

2, i.e.
an FCC lattice as this has the most ’spherical’ Brilluoin
zone and thus produces the widest bandgaps. Figure 2a
illustrates the Brillouin zone of the FCC lattice rela-
tive to the woodpile. While the FCC woodpile shares
the translational symmetry of an FCC lattice, it does
not have the same rotational symmetries. The usual “X
points” of the FCC brillouin zone are no longer equiva-
lent. We therefore used more specific labels for the FCC
brillouin zone as detailed in figure 2b. We orient the
brillouin zone in the (Xb, Yb, Zb) basis and the wood-

pile in the (Xw, Yw, Zw) basis with Xw = (Xb+Yb)/
√

2,

Yw = (−Xb + Yb)/
√

2, Zw = Zb. The layers in our
woodpiles are stacked along the Zw direction and the
rods aligned along the Xw and Yw directions.

In order to create a resonant cavity in which the pho-
tons will be confined, a defect has to be added to the
crystal [1, 44, 45]. Following our previous work [1],
adding sphere based defects to air sphere crystals, here
we choose a cuboid defect. The defect position is shown
in figure 1b. It is centered between two rods of the mid-
dle layer (with rods along the Xw axis) and positioned
along Xw so that it is situated under a rod from the
layer directly above it.

We initially conducted simulations for a fixed de-
fect size, but at different positions within the woodpile.
First, so that it is not directly over/under a rod from
the adjacent layer, second with the defect placed on a

(a) (b)

Fig. 1: (a) Illustration of the woodpile geometry and
its parameters. (b) Illustration of the defect and air
buffer. The defect is shown in red with dimensions

(dx, dy, dz) and the boundaries of the air buffer in black
with dimensions (bx, by, bz).
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Fig. 2: (a) The orientation of the woodpile relative to
the FCC brillouin zone. The size of the rods has been

changed to improve visibility. (b) Labeling of the
traditional FCC brillouin zone points Γ, X, U, L, K

and W relative to fixed brillouin zone axes Xb, Yb, Zb.

rod. We found that the confinement properties were
worse (lower Q-factor, larger mode volume) than for the
position between the rods (described above and in fig-
ure 1b) thus we chose this symmetry for all the work
reported here. However, we consider three different de-
fect sizes D0, D1 and D2, as illustrated in figures 3a,
3b and 3c. In an attempt to reduce the energy leakage
from the defect into the woodpile, we also looked at the
effect of adding a cuboid air buffer around the defect D1
(i.e. in the same position, but larger than the defect).
Three different air buffer sizes A0, A1 and A2, as illus-
trated in figures 4a, 4b and 4c were considered. For our
simulations, we used h/c = 1/4 and an experimentally
relevant refractive index n = nwp = ndef = 3.3 (corre-
sponding to Gallium-Phosphide (GaP), for example) for
the woodpile rods and the defect. The air buffer and
the backfill material is considered to be air/vacuum of
refractive index nbf = 1. For the non-infinite woodpile
crystal, we used Nl = 37 and Nr/l = 13.
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(a) D0 (b) D1 (c) D2

Fig. 3: The defects without air buffer D0 (a), D1 (b),
D2 (c), of sizes (dx, dy, dz) = (0.25, 0.25, 0.5) · c,

(0.5, 0.5, 0.25) · c and (0.5, 0.5, 0.5) · c respectively.

(a) A0 (b) A1 (c) A2

Fig. 4: The defect D1 with air buffers A0 (a), A1 (b),
A2 (c) of sizes (bx, by, bz) = (a− 0.5 · w, a− 0.5 · w,

0.25 · c), (a, a, 0.25 · c) and (a+ 0.5 ·w, a+ 0.5 ·w, 0.25 · c)
respectively. The boundaries of the air buffers are

indicated by the white wireframe box.

2.B. Bandgaps: Photonic bands of a 3D FCC wood-
pile PhC without defects

Initially, it is necessary to find the allowed propagation
modes and eventual bandgaps of our photonic crystal.
To do this, we used the MIT photonic bands package,
which solves the frequency domain eigenproblem for a
periodic dielectric structure [37, 38], giving us the al-

lowed propagation modes for different wavevectors ~k.
The results for the woodpile structure described above
using (w/c)opt = 0.2145 are shown in figure 5a. A full
bandgap from c/λ0 ' 0.4853 to 0.5689 is clearly seen.

This value of (w/c)opt was chosen after calculating the
gap-midgap ratio ∆ω/ω0 as a function of w/c. Figure 5b
shows the results of these calculations, with a maximum
gap-midgap ratio of 16% for (w/c)opt.

3. Calculating relevant parameters of the D1 cavity

In the following, we show how we calculate relevant pa-
rameters for our cavity structures. These are the cav-
ity resonant wavelength λ0, the quality factor Q, the
mode volume Veff , the Purcell factor Fp and the cou-
pling strength gR. We use as detailed example the D1
cavity described earlier in figure 3b.

3.A. Resonant wavelength and Q-factors of cuboid
defect cavities with and without air buffers

Now that the frequency range of the full photonic
bandgap has been ascertained, we will look at the con-
finement efficiency of different defect cavities within this
woodpile. To do this we use a finite woodpile with a
defect, as previously described in section 2.A. We then
add a broadband source covering the bandgap within
the defect and look at the time decay of the electromag-
netic field using FDTD. In order to better distinguish

modes, we simulate using three orthogonal orientations
of the dipole in 3D space: along the Xw, Yw and Zw
axis, which we designate by Ex, Ey and Ez respectively.

The centre of the bandgap is at c/λ0 ' 0.527. For
λ0 = 637nm, which corresponds to the zero-phonon line
(ZPL) of nitrogen-vacancy centres (NV centres) in dia-
mond, the corresponding vertical period of the woodpile
is c = 0.527 · λ0 = 336nm. The other parameters are
then a = c/

√
2 ' 237nm for the horizontal period inside

each layer, w = 0.2145 · c ' 72nm for the rod width and
h = 0.25 · c ' 84nm for the rod height.

In the simulation a field probe is placed close to the
excitation dipole located 1/4dx, 1/4dy or −1/4dz away
from it depending on its direction. The field at this
probe is monitored as the simulation progresses and we
obtain a slowly decaying field amplitude oscillating pri-
marily at the allowed frequencies of the cavity. Hence
taking the fast Fourier transform (FFT) of this ringdown
signal allows us to determine the resonant frequencies of
the cavities and gives us an estimate of the Q-factors of
these resonances (Q = λ/∆λ).

As these are high-Q (long time decay) resonances,
the FDTD simulations were run for ∼ 105 − 106 it-
erations (timestep δt ∼ 3 − 11 × 10−18s, total time
∼ 1 − 7 × 10−12s) in order to confirm the field decayed
significantly by the end of the simulation. A single simu-
lation using a non-homogeneous mesh of around 107 cells
adapted to the geometry takes about 2 weeks on a com-
puting node with two 2.8 GHz quad-core Intel Harper-
town E5462 processors, using a single core (as unfortu-
nately, our software does not support parallel process-
ing) and 2 out of the available 8GB of RAM memory[46].
The field decay and spectrum for a woodpile with defect
D1 is shown in figure 6 illustrating the simple method of
calculating Q. In many structures, we do not achieve a
full decay of the field: this limits the Q values measured
from the FFT peaks. Hence, for the analysis of very
long lived decays corresponding to very narrow spectral
features, we also analyze the ringdown signal using the
filter diagonalization method [47] via the Harminv soft-
ware [48], which extracts the decay rates and frequencies
of the high-Q cavity modes.

3.B. Calculating the effective mode volume Veff
Having determined the resonant frequency, we can vi-
sualise a cavity mode on resonance using single fre-
quency ”snapshots”. We illustrate the confinement of
the electric field energy density distribution in each plane
y-z, x-z, and y-x in figure 7 for the defect D1. It
shows x, y, and z projections of the woodpile superim-
posed over the electric field energy density distributions
(ε · |E|2 = ε ·(|Ex|2 + |Ey|2 + |Ez|2), although the plotted
values are actually εr · |E|2 with εr = ε/ε0) of a defect
for an Ex oriented dipole mode.

In all cases the field is strongly localised to the de-
fect, with some spread to the high refractive index links
nearby. The FDTD algorithm allows a computation of
the effective mode volume of the cavity modes with high
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(a) (b)

Fig. 5: (a) Bandgap diagram of a woodpile with rods of refractive index 3.3 and a backfill of refractive index 1

(vacuum). Created with the MPB software [37, 38]. The labels used for the different wavevectors ~k are explained in
figure 2b. (b) Gap-midgap ratio ∆ω/ω0 (between band 2 and band 3) as a function of w/c, where w is the width of

the woodpile rods and c its “stacking period”, as explained in figure 1a.

(a) (b)

Fig. 6: Amplitude of the electric field Ex as a function
of time (a) and the corresponding fast Fourier

transform (b), near the defect in a woodpile with
ndef = nwp = 3.3 and nbf = 1, after an initial

excitation pulse in the X direction. Using Harminv
[47, 48], we find a resonance peak at λres0 ' 638.98nm
with a Q-factor of 7.54× 105 ± 5%. It corresponds to

the fourth column of table 1.

Q-factor, which is the 3D PhC cavity mode that survives
after a sufficiently long period of time. We do this by
creating a sequence of resonant frequency ”snapshots”
through the resonant mode, covering all grid points, then
digitally summing the fields using the definition of the
effective mode volume Veff :

Veff =

∫∫∫
ε(r) |E(r)|2 d3r[

ε(r) |E(r)|2
]
max

(1)

We see that Veff is given by the spatial integral of the

electric field intensity for the cavity mode, divided by

its maximum value. The ε(r) in (1) is equal to n2(r)
µr

ε0

and therefore proportional to the square of the spatially
dependent refractive index n(r). A figure of merit is the
dimensionless effective volume fopt, which is the effec-
tive cavity mode volume Veff normalised to the cubic
wavelength of the resonant mode (λ/n)3 in a medium of
refractive index n, defined as:

fopt =
Veff

(λ/n)3
(2)

Since Emax is proportional to the inverse square root

of the mode volume (V
−1/2
eff ), the field coupling strength

can be enhanced by reducing Veff .

3.C. Estimating the Purcell enhancement Fp and the
coupling strength gR
In order to evaluate the usefulness of the simulated cav-
ities for quantum information applications, we estimate
how strongly a quantum emitter, which can be consid-
ered as a transition dipole, placed inside it will interact
with the vacuum field created by the cavities. A strong
interaction means it will be possible to entangle photon
states with quantum emitter states.

In this paper, we consider diamond NV-centres as
an example quantum emitter. Diamond NV-centres
are interesting due to their stability as a single pho-
ton source, their long spin decoherence time (∼ ms)
and their ability to generate indistinguishable photons
at low-temperatures [49, 50]. Additionally, their avail-
ability in the form of defects in nanocrystals makes it
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(a) (b) (c)

(d) (e) (f)

Fig. 7: The resonant frequency snapshots of a defect cavity mode energy density distribution
(ε(|Ex|2 + |Ey|2 + |Ez|2)) in the central X (a,d), Y (b,e), and Z (c,f) planes for a woodpile with ndef = nwp = 3.3,
nbf = 1 and a D1 defect, after an initial broadband gaussian modulated sinewave excitation pulse. High Q-factor

resonant modes at c/λ0 ' 0.5255 with an Ex-oriented dipole source (a,d), c/λ0 ' 0.5058 with an Ey-oriented dipole
source (b,e) and c/λ0 ' 0.5300 with an Ez-oriented dipole source (c,f).

possible to embed them within photonic crystals fabri-
cated using a different material, for instance 3D photonic
crystals made via direct laser writing.

3.C.1. Emission spectrum and coupling rate of a
coupled dipole-cavity system:
When the cavity mode radial frequency ωcav is equal to
the transition dipole radial frequency ωos (corresponding
to the energy difference between the ground and excited
state of the quantum emitter) and if the dipole has the
same polarization as the cavity mode, the luminescence
spectrum for such a system is[51, 52]:

S(ω) ∝
∣∣∣∣Ω+ − ω0 + iκ2

ω − Ω+
−

Ω− − ω0 + iκ2
ω − Ω−

∣∣∣∣ (3)

where ω0 = ωcav = ωos and:

Ω± = ω0 −
i

4
(κ+ γ)±

√
g2
R −

(
κ− γ

4

)2

(4)

κ = ∆ω = ωcav
Q is the full width at half-maximum

(FWHM) of the cavity mode, corresponding to the rate
of escape of photons from the cavity, and γ is the FWHM
of the emission spectrum of the quantum emitter dipole

without any cavity (equivalent to its spontaneous emis-
sion rate assuming no other broadening processes). For
diamond NV-centres, we take the emission rate into
the zero-phonon line which is resonant with the cavity:
γ = γZPL = 2π · 3.3 · 10−3GHz [1, 40, 53–56].

The dipole-cavity coupling rate gR is given by[52]:

gR =

√
π · e2

0 · fEG
4 · π · ε0 · n2

def · Veff ·me
(5)

e0 and me are the elementary charge and mass of an
electron respectively, ε0 is the vacuum permittivity, ndef
is the refractive index of the defect, where the dipole is
located and Veff is the mode volume of the cavity mode.
fEG is the oscillator strength of the dipole given by:

fEG =
2 ·me · ωos · d2

EG

e2
0 · ~

(6)

where dEG is the dipole moment of the quantum emitter:

dEG =

√
3 · π · ε0 · c30 · ~

nos · ω3
os

× γ (7)
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nos is the refractive index of the material directly sur-
rounding the quantum emitter. In the case of NV-
centres, this is diamond with nos = 2.4.

Equations (5), (6) and (7) lead to:

gR =

(
3Q

4π2Veff
× λ3

os

n2
defnos

× κγ

4

) 1
2

(8)

3.C.2. Strong/weak coupling limit:
As illustrated in [57], the luminescence spectrum S(ω)
given in (3) corresponds to a superposition of two peaks,
with central frequencies <(Ω+) and <(Ω−) and whose
linewidths are:

γ+ ' −2=(Ω+) (9)

= −2=

ω0 −
i

4
(κ+ γ) +

√
g2
R −

(
κ− γ

4

)2
(10)

γ− ' −2=(Ω−) (11)

= −2=

ω0 −
i

4
(κ+ γ)−

√
g2
R −

(
κ− γ

4

)2
(12)

When 4gR < |κ− γ|, the general two peak spectrum
collapses to a single peak at frequency ω0. This is
called the weak coupling regime. When 4gR > |κ− γ|,
there are two separate frequency components at ω± =

ω0 ±
√
g2
R −

(
κ−γ

4

)2
and this is called the strong cou-

pling regime. However, this only leads to two separate
peaks in the spectrum for:

4gR
κ+ γ

> 1 (13)

This is the commonly used condition for strong coupling.
The weak and strong coupling regimes are characterised
by the reversibility of the emission. In the weak cou-
pling regime, photons emitted by the quantum emitter
are very unlikely to be reabsorbed by it, i.e. the emis-
sion is irreversible. The converse is true for the strong
coupling regime where emitted photons are very likely to
be reabsorbed by the quantum emitter, i.e. the emission
is reversible.

3.C.3. Spontaneous emission modification: Purcell
factor:
In the weak coupling regime, for varying values of κ, γ+

tends to stay close to γ, while γ− stays close to κ. γ+

therefore corresponds to the emission rate of the cou-
pled dipole, while γ− corresponds to the decay rate of
the coupled cavity mode. The modification of the spon-
taneous emission rate γ can thus be quantified by the
so-called Purcell factor:

Fp =
γ+

γ
(14)

3.C.4. Purcell factor approximation in the weak cou-
pling regime:
In the weak coupling regime, when 4gR � |κ− γ|, but
also when κ� γ (which is usually the case) and 4g2 �
κγ, Ω+ and Ω− can be simplified to[52]:

Ω+ ' ω0 − i
(
γ

2
+

2g2
R

κ

)
= ω0 − i

(
2g2
R

κ

)
(15)

Ω− ' ω0 − i
(
κ

2
− 2g2

R

κ

)
(16)

Equations (14), (10), (15) and (8) then lead to:

Fp '
4g2
R

κγ
=

3Q

4π2Veff
× λ3

os

n2
defnos

(17)

When the nano-diamond is small (� λ) and embed-
ded in a defect, nos ∼ ndef . This allows us to further
simplify (17) to the well known approximation of the
Purcell factor in the weak coupling regime:

Fp '
3Q
(
λos
ndef

)3

4π2Veff
(18)

This is the approximation we used for the values pre-
sented in tables table 1 and table 2 and figure 8c. How-
ever, due to the strong coupling we obtained in most
cases, it is not a valid indicator of the spontaneous emis-
sion modification. In the strong coupling region the peak
splitting leads to an oscillating probability of emission
which decays at a rate largely determined by the cavity
lifetime.

4. Results
4.A. Results for different defect sizes
First, we look at the defects without air buffers D0, D1
and D2. Table 1 and figure 8 show the corresponding
results. Simulations for the defect D0 in the Ex direc-
tion showed no clearly distinguishable resonance modes,
which is why its entries in table 1 are marked n/a. The
defect D1 gives the best results for an excitation in the
Ex direction with a Q-factor Q ' 7.54×105 and a mode
volume Veff ' 0.161 · (λres/n)3.

In terms of coupling strength, all defects without air
buffer exhibit strong coupling capabilities, except D0
in the Ex and Ey directions. Even in the Ez direc-
tion, it barely exceeds the strong coupling condition with
gR/(2π) ' 5.85GHz and 4gR/(κ + γ) = 1.66. It does
however offer a spontaneous emission enhancement of
Fp = 28.5.

D1 shows the best coupling strength with gR/(2π) '
6.37GHz and 4gR/(κ+γ) = 40.57. For both D1 and D2,
when moving from Ex excitations to Ey and Ez excita-
tions, the Q-factors become smaller and the mode vol-
umes larger, i.e. the confinement properties get worse.
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We think this is because dipoles in the Ey and Ez direc-
tions emit most of their energy in the XZ and XY plane
respectively, but since the emitter is placed between two
rods in the X direction, there is nothing preventing en-
ergy escaping along the X direction, apart from the de-
fect box itself.

4.B. Results for different air buffer sizes

We now concentrate on the defect D1, which gave the
best results. As can be seen on the corresponding energy
snapshots in figure 7, the energy tends to leak into the
rods touching the defect. In order to improve the con-
finement, i.e. reduce the leakage, we therefore now add
the previously mentioned cuboid air buffers around the
defect to disconnect it from the surrounding rods. Ta-
ble 2 and figures 9 and 8 show the results for the defects
with air buffers A0, A1 and A2. This essentially corre-
sponds to ”cutting” into the rods by 1/4 ·w, 1/2 ·w and
3/4 · w. Since bz = dz = 0.25 · c = h and there is a rod
touching the top of the defect as can be seen in figures
4a, 4b, 4c, the structure remains contiguous and could
be fabricated directly or as an inverse for backfilling with
high refractive index material.

Figures 10 and 11 show that the two peaks on the
side of the main energy peak in the YZ plane are indeed
reduced by the air buffers, the most efficient being the
air buffer used in A2. However, while the mode volume
also dropped as expected for the Ex excitation in the A0
and A1 defects, it instead increased for the A2 defect.
A2 is also the only one of the defects with air buffers not
suitable for strong coupling, with 4gR/(κ+γ) = 0.15 for
an Ex excitation and 4gR/(κ + γ) = 0.85 for an Ez
excitation. The corresponding emission enhancements
are Fp = 9.45× 102 and Fp = 8.58× 103.

The smallest mode volume and biggest coupling
strength are obtained for the defect A0 (figure 4a), with
Veff ' 0.100 · (λres/n)3 and gR/(2π) = 8.07GHz. The
corresponding Q-factor Q ' 3.67× 105 is lower than for
the same defect without air buffer where Q ' 7.54×105,
which leads to a weaker coupling with 4gR/(κ + γ) =
25.09. But since the Q-factor can be increased by in-
creasing the number of periods of the woodpile structure,
[1, 58, 59], stronger coupling could still be achieved, still
rendering this kind of air buffer useful.

5. Conclusion

In this article, we have investigated 3D FCC woodpile
photonic crystals formed in high-index-contrast mate-
rials (GaP) and found a maximum photonic band gap
(PBG) of 16% at (w/c)opt ' 0.2145 by using the plane-
wave expansion method. We also introduced cuboid-
shaped defects with various sizes near the centre of the
middle layer in the 3D PhCs and calculated the Q-factors
and mode volumes of cavity modes using the FDTD
method. The best results were obtained for the de-
fect D1 for which we found a Q-factor Q = 7.54 × 105

and a mode volume Veff = 0.161(λres/n)3 for an ex-
citation in the Ex direction. Moreover, we found that
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Fig. 8: Q-factors (a), mode volumes (b) and Purcell
factors (c) of the resonant modes for the six defects
studied in this paper. Additionally (d) shows the

strong coupling condition 4gR
κuc+γ

. The strong coupling

regime is attained when it is larger than 1.
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w
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Fig. 9: Frequency snapshots of the energy density ε(|Ex|2 + |Ey|2 + |Ez|2) for the defects A0 (a-d), A1 (e-h) and A2
(i-l), taken in the X, Y and Z planes going through the centre of the defect.

w
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Fig. 10: 3D view of the frequency snapshots of the energy density ε(|Ex|2 + |Ey|2 + |Ez|2) for the defects D1 (a,e), A0
(b,f), A1 (c,g) and A2 (d,h). The snapshots were taken in the Y-Z planes going through the centres of the defects.
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Table 1: Summary of achievable Q-factors Quc, modal volumes Veff , Purcell factors Fp, and leakage rates κuc/(2π)
at the highest-Q resonant modes (c/λ) for the defects without air buffer D0, D1 and D2. Simulations for the defect
D0 in the Ex direction showed no clearly distinguishable resonance modes, which is why its entries are marked n/a.

Defect type D0 D1 D2
Defect size (0.25, 0.25, 0.5) · c (0.5, 0.5, 0.25) · c (0.5, 0.5, 0.5) · c
Air buffer size n/a n/a n/a
ndef 3.3 3.3 3.3
nwp 3.3 3.3 3.3
nbf 1 1 1
c(µm) 0.3358 0.3358 0.3358
Dipole orientation Ex Ey Ez Ex Ey Ez Ex Ey Ez
c/λ0 n/a 0.5890 0.5530 0.5255 0.5058 0.5300 0.4938 0.4922 0.5007
λ0(nm) n/a 570.08 607.23 638.98 663.88 633.53 679.99 682.22 670.71
Quc n/a 3.71 × 102 3.34 × 104 7.54 × 105 2.73 × 105 8.35 × 104 1.35 × 105 1.06 × 105 8.05 × 104

Veff (µm3) n/a 5.09 × 10−3 1.19 × 10−3 1.17 × 10−3 2.44 × 10−3 1.37 × 10−3 2.89 × 10−3 3.48 × 10−3 4.56 × 10−3

Vn =
Veff

(λ0/ndef )3
n/a 0.987 0.190 0.161 0.299 0.193 0.330 0.394 0.543

Fp n/a 2.85 × 101 1.33 × 104 3.56 × 105 6.92 × 104 3.29 × 104 3.10 × 104 2.05 × 104 1.13 × 104

κuc/(2π)
= c0/(λuc ·Quc)

(GHz) n/a 1418.48 14.79 0.62 1.66 5.66 3.27 4.13 5.56

τuc = 2π/κuc(ns) n/a 7.05 × 10−4 0.07 1.61 0.60 0.18 0.31 0.24 0.18
Diamond NV centres Diamond nanocrystals: nos ∼ 2.4
λos(nm) 637

V ′eff (µm3) = Vn ×
(
λos
ndef

)3
n/a 7.10 × 10−3 1.37 × 10−3 1.16 × 10−3 2.15 × 10−3 1.39 × 10−3 2.37 × 10−3 2.83 × 10−3 3.91 × 10−3

κ′uc/(2π)
= c0/(λos ·Quc)

(GHz) n/a 1269.47 14.09 0.62 1.73 5.63 3.49 4.43 5.85

τ ′uc = 2π/κuc(ns) n/a 7.88 × 10−4 0.07 1.60 0.58 0.18 0.29 0.23 0.17

γZPL/(2π)(GHz) 3.3 × 10−3 (2π/γZPL = τZPL ∼ 300ns)

dZPLEG (C ·m) 3.57 × 10−30(= 1.07D)

fZPLEG 0.025
Esp(V/m) n/a 4.77 × 105 1.09 × 106 1.18 × 106 8.67 × 105 1.08 × 106 8.25 × 105 7.55 × 105 6.43 × 105

gZPLR /(2π)(GHz) n/a 2.57 5.85 6.37 4.67 5.81 4.45 4.07 3.46

τZPLR = 2π/gZPLR (ns) n/a 0.39 0.17 0.16 0.21 0.17 0.22 0.25 0.29

Table 2: Summary of achievable Q-factors Quc, modal volumes Veff , Purcell factors Fp, and leakage rates κuc/(2π)
at the highest-Q resonant modes (c/λ) for the defects with air buffer A0, A1 and A2.

Defect type A0 A1 A2
Defect size (0.5, 0.5, 0.25) · c (0.5, 0.5, 0.25) · c (0.5, 0.5, 0.25) · c
Air buffer size (a− 0.5 · w, a− 0.5 · w, 0.25 · c) (a, a, 0.25 · c) (a+ 0.5 · w, a+ 0.5 · w, 0.25 · c)
ndef 3.3 3.3 3.3
nwp 3.3 3.3 3.3
nbf 1 1 1
c(µm) 0.3358 0.3358 0.3358
Dipole orientation Ex Ey Ez Ex Ey Ez Ex Ey Ez
c/λ0 0.5409 0.5303 0.5377 0.5513 0.5391 0.5449 0.5715 0.5440 0.5593
λ0(nm) 620.86 633.28 624.46 609.13 622.88 616.23 587.59 617.28 600.35
Quc 3.67 × 105 2.50 × 105 6.14 × 104 1.48 × 105 1.69 × 105 4.25 × 104 3.80 × 103 1.17 × 105 1.35 × 104

Veff (µm3) 6.66 × 10−4 2.09 × 10−3 1.13 × 10−3 7.76 × 10−4 1.39 × 10−3 1.26 × 10−3 1.73 × 10−3 9.88 × 10−4 7.22 × 10−4

Vn =
Veff

(λ0/ndef )3
0.100 0.296 0.167 0.123 0.207 0.193 0.306 0.151 0.120

Fp 2.78 × 105 6.41 × 104 2.79 × 104 9.14 × 104 6.21 × 104 1.67 × 104 9.45 × 102 5.92 × 104 8.58 × 103

κuc/(2π)
= c0/(λuc ·Quc)

(GHz) 1.32 1.90 7.82 3.32 2.85 11.45 134.14 4.13 36.91

τuc = 2π/κuc(ns) 0.76 0.53 0.13 0.30 0.35 0.09 0.01 0.24 0.03
Diamond NV centres Diamond nanocrystals: nos ∼ 2.4
λos(nm) 637

V ′eff (µm3) = Vn ×
(
λos
ndef

)3
7.20 × 10−4 2.13 × 10−3 1.20 × 10−3 8.87 × 10−4 1.49 × 10−3 1.39 × 10−3 2.20 × 10−3 1.09 × 10−3 8.62 × 10−4

κ′uc/(2π)
= c0/(λos ·Quc)

(GHz) 1.28 1.88 7.66 3.17 2.78 11.08 123.73 4.01 34.78

τ ′uc = 2π/κuc(ns) 0.78 0.53 0.13 0.32 0.36 0.09 0.01 0.25 0.03

γZPL/(2π)(GHz) 3.3 × 10−3 (2π/γZPL = τZPL ∼ 300ns)

dZPLEG (C ·m) 3.57 × 10−30(= 1.07D)

fZPLEG 0.025
Esp(V/m) 1.50 × 106 8.71 × 105 1.16 × 106 1.35 × 106 1.04 × 106 1.08 × 106 8.57 × 105 1.22 × 106 1.37 × 106

gZPLR /(2π)(GHz) 8.07 4.69 6.24 7.27 5.61 5.82 4.62 6.57 7.38

τZPLR = 2π/gZPLR (ns) 0.12 0.21 0.16 0.14 0.18 0.17 0.22 0.15 0.14
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Fig. 11: Normalized energy density
ε(|Ex|2 + |Ey|2 + |Ez|2) along a line parallel to the Y
axis going through the centre of the cavity for the D1

defect without air buffer and the A0, A1 and A2
defects with air buffers. This corresponds to a

cross-section along the Y axis for z = 2.9134µm of the
frequency snapshots of the energy density illustrated in

figures 7a, 9b, 9f, 9j and figures 10e, 10f, 10g, 10h.

adding air buffers around the defect allows us to reduce
the mode volumes. The cuboid-shaped defect cavities
with air buffer (A0 and A1) showed smaller mode vol-
umes, especially for A0, with mode volumes down to
Veff = 0.100(λres/n)3, while still having high Q-factors.
These high-Q cavities (D1,D2,A0,A1) with small mode
volumes would allow the observation of strong coupling
of a single solid-state quantum system (NV-centre) with
the cavity mode.

Fabricating our modelled structures would require
< 100nm feature sizes and will therefore be very chal-
lenging. However, we are actively pursuing 3D fabri-
cation of such structures using DLW and have already
seen partial bandgaps in 3D photonic crystals down
to 1400nm [60]. The use of smaller wavelengths [61]
and new techniques like Stimulated-Emission-Depletion
(STED) [62] in DLW might allow even higher writ-
ing resolutions and therefore bandgaps at smaller wave-
lengths.
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S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Ku-
lakovskii, T. L. Reinecke, and A. Forchel, “Strong cou-
pling in a single quantum dot-semiconductor microcav-
ity system.” Nature 432, 197–200 (2004).

[15] E. Peter, P. Senellart, D. Martrou, A. Lemâıtre,
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