38 research outputs found

    Cystic leukoencephalopathy

    Get PDF
    How to Cite this Article: Ashrafi MR, Tavasoli AR. Cystic leukoencephalopathy. Iran J Child Neurol. Autumn 2014; 8:4(suppl. 1):3-4.Pls see pdf

    Infantile-Onset Pompe Disease

    Get PDF
      How to Cite this Article: Ashrafi MR, Tavasoli AR. Infantile-Onset Pompe Disease. Iran J Child Neurol Autumn 2012; 6:4(suppl. 1):7-9. Pls see PDF. References: 1. Kishnani PS, Steiner RD. Pompe disease diagnosis and management guidelines. American J med genetic. 2006 .Vol; 8; no5. 2. Case SE, Beckemyer AA. Infantile pompe disease on ERT-Updateonclinicalpresentation,musculoskeletal management, and Exercise considerations. American J med genetic.160C:69-79(2012). 3. Rocco MD,Buzzi D. Glycogen storage disease type II:clinical overview. Acta myologica. 2007; XXVI; P.42-44. 4. Fenichel GM.Clinical pediatric neurology. Sixth edition.2009; p.174,188. 5.Swaiman KF, Ashwal S. Swaimans’  pediatric neurology. Fifth edition .2012 .Vol.1,p.378-380.      

    Differential Diagnosis of Organic Acidemia: Clinical and Neuroimaging Findings

    Get PDF
    Clinical differential DiagnosisThe organic acidemias are important in the differential diagnosis of metabolic and neurologic derangement in the neonate and of new-onset neurologic signs in the older child.A-Organic aciduriaSeveral disorders, not classified as primary disorders of organic acid metabolism, have a characteristic urinary organic acid profile that suggests the appropriate diagnosis.• Mevalonicaciduria, a disorder of cholesterol biosynthesis, shows mevalonic acid in the urine.• Glutaricacidemia type II, a disorder of fatty acid oxidation, has multiple organic acids in abnormal concentration in urine. These organic acids include ethylmalonic acid, glutaric acid, dicarboxylic acids, and glycine conjugates of medium chain dicarboxylic acids.• The fatty acylCoA-glycine conjugates that signal incomplete fatty acid oxidation and serves as signals to the diagnosis of MCAD defeciency and other disorders of fatty acid oxidation and transport.• Biotinidase deficiency, a disorder of biotin recycling, results in the urinary excretion of several unusual organic acids, including 3-hydroxy-isovaleric, 3-hydroxypropionic, 3-hydroxybutyric acids, and acetoacetate. Propionyl glycine may also be seen.• Mitochondrial diseases with disordered oxidative phosphorylation often demonstrate the presence of abnormal organic acids in the urine.B-AcidosisNon-genetic conditions, such as shock, sepsis, DKA, liver and kidney failure, thiamine deficiency, RTA, some drug intoxication cause acidosis- genetic conditions are include: inherited metabolic disorders of lactate and pyruvate metabolism and oxidative phosphorylation, disorders of the Krebs cycle such as fumarase deficiency.C-HyperammonemiaDisorders of the urea cycle and the hyperammonemia-hypoglycemia syndrome.Neuroimaging• A variety of MRI abnormalities have been described in the organic academia, including distinctive basal ganglia lesions in glutaricacidemia type I (GA I), white matter changes in maple syrup urine disease (MSUD), and abnormalities of the globus pallidus in methylmalonic acidemia. Macrocephaly is common in GA I.• Some differential agnosis of MRI findings in organic academia is consist of: HIE, mucopolysacaridosis, middle fossa arachnoid cyst, leighdisease, hexachlorophene toxicity in neonates, myelin splitting disorders.• Some organic aciduria such as L-2-Hydroxyglutaricaciduria may suggest leukodystrophy in MRI

    Eye see cam Video -Oculography (VOG): A New Method for Diagnosis and Following of NPC Patients

    Get PDF
    How to Cite This Article: Tavasoli AR, Ashrafi MR. Eye see cam Video –Oculography (VOG): A New Method for Diagnosis and Following of NPC Patients . Iran J Child Neurol. 2015 Autumn;9:4(Suppl.1): 26.Pls see pdf

    How We Can Put Forward the Diagnosis of NPC Disease: Suspicion Index

    Get PDF
    How to Cite this Article: Ashrafi MR, Tavasoli AR. How We Can Put Forward the Diagnosis of NPC Disease: Suspicion Index. Iran J Child Neu rol. 2015 Autumn;9:4(Suppl.1): 2-4.Pls see pdf.

    Neuralgic amyotrophy with cervical root and cranial nerves involvement in a child

    Get PDF
    Idiopathic neuralgic amyotrophy (INA) is a disorder presented with acute severe pain in the upper extremity, followed by muscle weakness, paralysis and atrophy. INA is rare in children and few reports are found in the literature. Here, we report a case of INA in an 8-year old boy following pharyngitis

    Loading and promoter effects on the performance of nitrogen functionalized graphene nanosheets supported cobalt Fischer-Tropsch synthesis catalysts

    Get PDF
    The effects of nitrogen functional groups on graphene surface and also the effects of cobalt loading and ruthenium promoter on the performance of nitrogen functionalized graphene nanosheets (N-GNS) supported cobalt catalysts in Fischer–Tropsch synthesis (FTS) are investigated. A 15 wt% Co/PGNS catalyst, a series of Co/N-GNS (15–30 wt% loading) and ruthenium promoted catalysts (25 wt% Co,0.5 wt% Ru/N-GNS and 25 wt% Co,0.5 wt% Ru/PGNS) were prepared by impregnation method. The purified GNS and functionalized GNS and all catalysts were characterized by Raman spectroscopy, FTIR, SEM, EDS, ICP, BET, TEM, XRD and TPR. The catalysts assessed in FTS in a fixed bed micro-reactor at 220 °C, 1.8 Mpa and H 2 /CO ratio of 2. Functionalization of GNS shifted the TPR reduction peaks to lower temperature, increased the dispersion of cobalt particles and increased the percentage CO conversion from 70.6% to 74.5%. Increasing the cobalt loading resulted in increasing the average cobalt cluster size, improvements in the reducibility of Co 3 O 4 . The maximum FTS activity for N-GNS supported catalyst is achieved at 30 wt % cobalt loading. The C 5 + selectivity for the 30 wt % cobalt catalyst was higher than that of the 15 wt % Cobalt catalyst. Addition of 0.5 wt%Ru increased the FTS rate (gCH/(gcat·h)) from 0.377 to 0.412 and the liquid products selectivity from 86.5% to 91.2%. © 2019 Hydrogen Energy Publications LL

    Neurological and Vascular Manifestations of Ethylmalonic Encephalopathy

    Get PDF
    How to Cite This Article: Tavasoli AR, Rostami P, Ashrafi MR, Karimzadeh P. Neurological and Vascular Manifestations of Ethylmalonic Encephalopathy. Iran J Child Neurol. Spring 2017; 11(2):57-60. AbstractObjectiveEthylmalonic encephalopathy (EE) is a severe mitochondrial disease of early infancy clinically characterized by a combination of developmental delay, progressive pyramidal signs, and vascular lesions including petechial purpura, orthostatic acrocyanosis, and chronic hemorrhagic diarrhea. Biochemical hallmarks of the disease are persistently high level of lactate, and C4–C5-acylcarnitines in blood, markedly elevated urinary excretion of methylsuccinic and ethylmalonic (EMA) acids. Here we report two patients with EE as a 16-months-old male infant and a 2-yr-old boy referred to Pediatric Neurology Clinic in Children’s Medical Center, Tehran-Iran that in one patient genetic analysis revealed a homozygous mutation of the ETHE1 gene in favor of ethylmalonic acidemia. References 1. Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E. Ethylmalonic encephalopathy is caused by mutation in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet 2004; 74:239-252.2. Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, Tiranti V. Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 2011; 15:353– 362.3.Zafeiriou DI, Augoustides-Savvopoulou P, Haas D, Smet J, Triantafyllou, Vargiami E. Ethylmalonic encephalopathy: clinical and biochemical observations. Neuropediatrics 2007; 38:59-60.4. UluçYis, IpekPolat, PakizeKarakaya, MügeAyanoglu, AyseSemraHiz. Importance of acrocyanosis in delayed walking. J Pediatr Neurosci 2015; 10(1):80-81.5.Garcia-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J Grosso S, Mostardini R, Farnetani MA, Molinelli. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 1997; 17:165–170.6. Tiranti V, Briem E, Lamantea E, Mineri R, Papaleo E, De Gioia L, et al. ETHE1 mutations are specific to ethylmalonic encephalopathy. J Med Genet 2006; 43:340-346.7. Heberle Lada Cindro LC, Al Tawari Asma A AA, Ramadan Dina G DG, Ibrahim Jamila K JK. Ethylmalonic encephalopathy report of two cases. Brain & Development 2006; 28(5):329–331.8. Mineri R, Rimoldi M, Burlina AB. Identification of new mutations in the ETHE1 gene in a cohort of 14 patients presenting with ethylmalonic encephalopathy. J Med Genet 2008; 45:473-478.9. H.R. Yoon, S.H. Hahn, Y.M. Ahn, S.H. Jang, Y.J. Shin, E.H. Lee, K.H. Ryu, B.L. Eun, P.Rinaldo, S. Yamaguchi. Therapeutical trial in the first three Asian cases of ethylmalonic encephalopathy: response to riboflavin. J Inherit Metab Dis 2001; 24:870–873.10. Maja Di Rocco, Ubaldo Caruso, Egill Briem, Andrea Rossi, Anna E.M. Allegri, Davide Buzzi, Valeria Tiranti. A case of ethylmalonic encephalopathy with atypical clinical and biochemical presentation. Mol Gen Metab 2006; 89:395–397.11. Mohammed Owaidha Al-Ajmi, Satheesh Kalanthra Kutty. Ethylmalonic Aciduria Encephalopathy with Respiratory Failure and Nephrotic Syndrome Rare Presentation. Middle East J Fam Med 2005; 3(3).12. Laura Papetti, Giacomo Garone, Livia Schettini, Carla Giordano, Francesco Nicita, Paola Papoff, Massimo Zeviani, Vincenzo Leuzzi, Alberto Spalice. Severe early onset ethylmalonic encephalopathy with West syndrome. Metab Brain Dis 2015; Jul 21.13. Dweikat I, Naser E, Damsah N, Libdeh BA, Bakri I. Ethylmalonic encephalopathy associated with crescentic glomerulonephritis. Metab Brain Dis 2012; 27(4):613-6.14. Nowaczyk MJ, Blaser SI, Clarke JT. Central nervous system malformations in ethylmalonic encephalopathy. Am J Med Genet 1998; 75:292–6.15. Christodoulou J, Petrova-Benedict R, Robinson BH, Jay V, Clarke JTR. An unusual patient with the neonatal Marfan phenotype and mitochondrial complex I deficiency. Eur J Pediatr 1993; 152:428–432.16. Chen E, Jurecki ER, Rinaldo P, Keilman C, Packman S, Johnston K. Nephrotic syndrome and dysmorphic facial features in a new family of three affected siblings with ethylmalonic encephalopathy. Am J Hum Genet 1994; 55:A2000.17. Lehnert W, Ruitenbeek W. Ethylmalonic aciduria associated with progressive neurological disease and partial cytochrome c oxidase deficiency. J Inherit Metab Dis 1993; 16:557–559.18. Garavaglia B, Colamaria V, Carrara F, Tonin P, RimoldiM,Uziel G. Muscle cytochrome c oxidase deficiency in two Italian patients with ethylmalonic aciduria and peculiar clinical phenotype. J Inherit Metab Dis 1994; 17:301–303.19. Ozand PT, Rashed M, Millington DS, SakatiN,Hazzaa S, Rahbeeni Z, al OdaibA,Youssef N, Mazrou A,Gascon GG. Ethylmalonic aciduria: an organic acidemia with CNS involvement and vasculopathy. Brain Dev 1994; 16: 12–22.20. Burlina AB, Dionisi-Vici C, Bennett MJ, Gibson KM, Servidei S, Bertini E, Hale DE, Schmidt-Sommerfeld E, Sabetta G, Zachello F, Rinaldo P. A new syndrome with ethylmalonic aciduria and normal fatty acid oxidation in fibroblasts. J Pediatr 1994; 125:79–86. 
    corecore