9 research outputs found
Ce-ms And Related Techniques As A Valuable Tool In Tumor Biomarkers Research
Cancer has been a disease of great concern because it is the second main cause of death in the world. Cures for most cancer pathologies have not yet been found, and an accurate and early diagnosis is essential for successful treatment. Therefore, research on tumor biomarkers has noticeably increased in recent years. The determination of such biomolecules, together with the routinely used laboratory exams for cancer diagnosis, would constitute a more reliable approach, known as systems biology. The "omics" era has corroborated in such investigations since the development of new technologies has arisen along with it. One of the techniques applied to the investigation of tumor biomarkers is CE, and the increasing applications of CE-MS in this field are also observed. This review covers the published literature on tumor biomarker investigations by CE-MS and related techniques, mostly within the last decade, but not limited to it. For didactic reasons this review is divided into the tumor biomarkers chemical classes, namely, proteins and related molecules, DNA adducts and modified nucleosides. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.31712141226Ghosal, R., Kloer, P., Lewis, K.E., (2009) Postgrad. Med. J., 85, pp. 358-363Ross, J.S., (2009) Adv. Anat. Pathol., 16, pp. 204-215Creaney, J., Robinson, B.W.S., (2009) Curr. Opin. Pulm. Med., 15, pp. 366-370Tinelli, A., Vergara, D., Martignago, R., Leo, G., Pisano, M., Malvasi, A., (2009) Curr. Genomics, 10, pp. 240-249Carrera, M.P., Ramirez-Exposito, M.J., Martinez-Martos, J.M., (2009) Anticancer Agents Med. Chem., 9, pp. 500-516Ullah, M.F., Aatif, M., (2009) Cancer Treat. Rev., 35, pp. 193-200Sund, M., Kalluri, R., (2009) Cancer Metastasis Rev., 28, pp. 177-183Sun, S., Day, P.J.R., Lee, N.P., Luk, J.M., (2009) Protein Pept. Lett., 16, pp. 473-478Alvaro, D., (2009) Curr. Opin. Gastroenterol., 25, pp. 279-284Gold, K.A., Kim, E.S., (2009) Curr. Opin. Oncol., 21, pp. 206-211Wong, S.C.C., Chan, C.M.L., Ma, B.B.Y., Lam, M.Y.Y., Choi, G.C.G., Au, T.C.C., Chan, A.S.K., Chan, A.T.C., (2009) Exp. Rev. Proteomics, 6, pp. 123-134Greinert, R., (2009) Pathobiology, 76, pp. 64-81Atkinson Jr., A.J., Colburn, W.A., DeGruttola, V.G., DeMets, D.L., Downing, G.J., Hoth, D.F., Oates, J.A., Zeger, S.L., (2001) Clin. Pharmacol. Ther., 69, pp. 89-95Rubbon, R.W., (1978) Biological Markers of Neoplasia: Basic and Applied Aspects, , Elsevier, New YorkMa, Y., Liu, G., Du, M., Stayton, I., (2004) Electrophoresis, 25, pp. 1473-1484Kaika, V., (2009) Electrophoresis, 30, pp. S40-S52Klampfl, C.W., (2009) Electrophoresis, 30, pp. S83-S91Karger, B.L., Guttman, A., (2009) Electrophoresis, 30, pp. S196-S202Salvatore, F., (2009) Electrophoresis, 30, pp. S203-S210Chankvetadze, B., (2009) Electrophoresis, 30, pp. S211-S221Scriba, G.K.E., (2009) Electrophoresis, 30, pp. S222-S228Heegaard, N.H.H., (2009) Electrophoresis, 30, pp. S229-S239Simionato, A.V.C., Lanças, F.M., Ruggiero, M.A., (2006) J. Liq. Chromatogr. Relat. Technol., 29, pp. 349-363Simionato, A.V.C., Simo, C., Cifuentes, A., Lacava, P.T., Araujo, W.L., Azevedo, J.L., Carrilho, E., (2006) Electrophoresis, 27, pp. 2567-2574Simionato, A.V.C., Cantu, M.D., Carrilho, E., (2006) Microchem. J., 82, pp. 214-219Simionato, A.V.C., Moraes, E.P., Carrilho, E., Tavares, M.F.M., Kenndler, E., (2008) Electrophoresis, 29, pp. 2051-2058Olivares, J.A., Nguyen, N.T., Yonker, C.R., Smith, R.D., (1987) Anal. Chem., 59, pp. 1230-1232Assunção, N.A., Bechara, E.J.H., Simionato, A.V.C., Tavares, M.F.M., Carrilho, E., (2008) Quím. Nova, 31, pp. 2124-2133Schmitt-Kopplin, P., Frommberger, M., (2003) Electrophoresis, 24, pp. 3837-3867Hernández-Borges, J., Neusuß, C., Cifuentes, A., Pelzing, M., (2004) Electrophoresis, 25, pp. 2257-2281Mischak, H., Coon, J.J., Novak, J., Weissinger, E.M., Schanstra, J.P., Dominiczak, A.F., (2009) Mass Spectrom. Rev., 28, pp. 703-724Ahmed, F.E., (2009) J. Chromatogr. B, 877, pp. 1963-1981Metzger, J., Lupa, P.B., Good, D.M., Mischak, H., (2009) Crit. Rev. Clin. Lab. Sci., 46, pp. 129-152Zuberovic, A., Wetterhall, M., Hanrieder, J., Bergquist, J., (2009) Electrophoresis, 30, pp. 1836-1843Cantu, M.D., Carrilho, E., Wulff, N.A., Palma, M.S., (2008) Quím. Nova, 31, pp. 669-675Anderson, N.L., Anderson, N.G., (2002) Mol. Cell. Proteomics, 1, pp. 845-867Pan, S., Zhang, H., Rush, J., Eng, J., Zhang, N., Patterson, D., Comb, M.J., Aebersold, R., (2005) Mol. Cell. Proteomics, 4, pp. 182-190Kolch, W., Neusuß, C., Pelzing, M., Mischak, H., (2005) Mass Spectrom. Rev., 24, pp. 959-977Fliser, D., Wittke, S., Mischak, H., (2005) Electrophoresis, 26, pp. 2708-2716Schiffer, E., Mischak, H., Novak, J., (2006) Proteomics, 6, pp. 5615-5627Huck, C.W., Bakry, R., Bonn, G.K., (2006) Electrophoresis, 27, pp. 111-125Xue, H., Lu, B., Lai, M., (2008) J. Transl. Med., 6, p. 52Yamashita, R., Fujiwara, Y., Ikari, K., Hamada, K., Otomo, A., Yasuda, K., Noda, M., Kaburagi, Y., (2007) Mol. Cell. Biochem., 298, pp. 83-92Chertov, O., Biragyn, A., Kwak, L.W., Simpson, J.T., Boronina, T., Hoang, V.M., Prieto, D.A., Fisher, R.J., (2004) Proteomics, 4, pp. 1195-1203Coon, J.J., Zurbig, P., Dakna, M., Dominicza, A.F., Decramer, S., Fliser, D., Frommberger, M., Schmitt-Kopplin, P., (2008) Proteomics Clin. Appl., 2, pp. 964-973Ablin, R.J., (1997) J. Cancer Res. Clin. Oncol., 123, pp. 583-594Leman, E.S., Cannon, G.W., Trock, B.J., Sokoll, L.J., Chan, D.W., Mangold, L., Partin, A.W., Getzenberg, R.H., (2007) Urology, 69, pp. 714-720Diamandis, E.P., (2007) Clin. Biochem., 40, pp. 11439-14737Christensson, A., Laurell, C.B., Lilja, H., (1990) J. Biochem., 194, pp. 755-763Peter, J., Unverzagt, C., Hoesel, W., (2000) Clin. Chem., 46, pp. 474-482Donohue, M.J., Satterfield, M.B., Dalluge, J.J., Welch, M.J., Girard, J.E., Bunk, D.M., (2005) Anal. Biochem., 339, pp. 318-327Theodorescu, D., Fliser, D., Wittke, S., Mischak, H., Krebs, R., Walden, M., Ross, M., Semjonow, A., (2005) Electrophoresis, 26, pp. 2797-2808Theodorescu, D., Schiffer, E., Bauer, H.W., Douwes, F., Eichhorn, F., Polley, R., Schmidt, T., Mischak, H., (2008) Proteomics Clin. Appl., 2, pp. 556-570Wittke, S., Schiffer, E., Bauer, H.W., (2007) Urologe, 46, pp. 733-739He, Z., Gao, N., Jin, W., (2003) Anal. Chim. Acta, 497, pp. 75-81Wang, J., Ren, J., (2005) Electrophoresis, 26, pp. 2402-2408Yu, M.C., Yuan, J.M., Govindarajan, S., Ross, R.K., (2000) Can. J. Gastroenterol., 14, pp. 703-709Kawata, T., Nakamura, S., Nakayama, A., Fukuda, H., Ebara, M., Nagamine, T., Minami, T., Sakurai, H., (2006) Biol. Pharm. Bull., 29, pp. 403-409Nakamura, S., Kawata, T., Nakayama, A., Kubo, K., Minami, T., Sakuraia, H., (2004) Biochem. Biophys. Res. Commun., 320, pp. 1193-1198Nakano, M., Higo, D., Arai, E., Nakagawa, T., Kakehi, K., Taniguchi, N., Kondo, A., (2009) Glycobiology, 19, pp. 135-143Bozzetti, F., Mariani, L., (2009) J. Parenter. Enteral. Nutr., 33, pp. 361-367Choudhary, G., Chakel, J., Hancock, W., Torres-Duarte, A., McMahon, G., Wainer, I., (1999) Anal. Chem., 71, pp. 855-859Zamfir, A., Peter-Katalinic, J., (2004) Electrophoresis, 25, pp. 1949-1963Tuteja, N., Tuteja, R., (2001) Crit. Rev. Biochem. Mol. Biol., 36, pp. 261-290Formenton-Catai, A.P., Carrilho, E., (2003) Anal. Bioanal. Chem., 376, pp. 138-141Fang, A.H., Smith, W.A., Vouros, P., Gupta, R.C., (2001) Biochem. Biophys. Res. Commun., 281, pp. 383-389Wang, H., Lua, M., Meib, N., Lee, J., Weinfeld, M., Lea, X.C., (2003) Anal. Chim. Acta, 500, pp. 13-20Yao, Q.H., Meib, S.R., Weng, Q.F., Zhang, P.D., Yang, Q., Wu, C.Y., Xua, G.W., (2004) Talanta, 63, pp. 617-623Peoples, M.C., Karnes, H.T., (2005) J. Chromatogr. B, 827, pp. 5-15Cavalieri, E., Frenkel, K., Liehr, J.G., Rogan, E., Roy, D., (2000) J. Natl. Cancer Inst. Monogr., 27, pp. 75-93Markushin, Y., Zhong, W., Cavalieri, E.L., Rogan, E.G., Small, G.J., Yeung, E.S., Jankowiak, R., (2003) Chem. Res. Toxicol., 16, pp. 1107-1117Markushin, Y., Gaikwad, N., Zhang, H., Kapke, P., Rogan, E.G., Cavalieri, E.L., Trock, B.J., Jankowiak, R., (2006) Prostate, 66, pp. 1565-1571Björk, R.M., Ericson, J.U., Gustafsson, C.E.D., Hagervall, T.G., Jönsson, Y.H., Wikström, M., (1987) Annu. Rev. Biochem., 56, pp. 263-287Schram, K.H., (1998) Mass Spectrom. Rev., 17, pp. 131-251Hall, R.H., (1965) Biochemistry, 4, pp. 1275-1292Borek, E., Kerr, S., (1972) Adv. Cancer Res., 15, pp. 163-190Borek, E., Baliga, B.S., Gehrke, C.W., Kuo, K.C., Belman, S., Troll, W., Wallkes, T.P., (1977) Cancer Res., 37, pp. 3362-3366Zheng, Y.F., Yang, J., Zhao, X.J., Feng, B., Kong, H.W., Chen, Y.J., Lv, S., Xu, G.W., (2005) World J. Gastroenterol., 11, pp. 3871-3876Zhao, X., Wang, W., Wang, J., Yang, J., Xu, G., (2006) J. Sep. Sci., 29, pp. 2444-2451Feng, B., Zheng, M., Zheng, Y., Lu, A., Li, J., Wang, M., Ma, J., Zhu, Z., (2005) J. Gastroenterol. Hepatol., 20, pp. 1913-1919Yang, J., Xu, G., Zheng, Y., Kong, H., Pang, T., Lv, S., Yang, Q., (2004) J. Chromatogr. B, 813, pp. 59-65Liebich, H.M., Xu, G., Di Stefano, G., Lehmann, R., Häring, H.U., Lu, P., Zhang, Y., (1997) Chromatographia, 45, pp. 396-401Jiang, Y., Ma, Y., (2009) Anal. Chem., 81, pp. 6474-6480Liebich, H.M., Müller-Hagdorn, S., Klaus, F., Meziane, K., Kim, K.R., Frikenschimidt, A., Krammerer, B., (2005) J. Chromatogr. A, 1071, pp. 271-275La, S., Cho, J.H., Kim, J.H., Kim, K.R., (2003) Anal. Chim. Acta, 486, pp. 171-182Andrews, C.L., Vouros, P., Harsch, A., (1999) J. Chromatogr. A, 856, pp. 515-526Wang, S., Zhao, X., Mao, Y., Cheng, Y., (2007) J. Chromatogr. A, 1147, pp. 254-260Issaq, H.J., Blonder, J., (2009) J. Chromatogr. B, 877, pp. 1222-1228Moini, M., (2007) Anal. Chem., 79, pp. 4241-4246Stump, M.J., Fleming, R.C., Gong, W.H., Jaber, A.J., Jones, J.J., Surber, C.W., Wilkins, C.L., (2002) Appl. Spectrosc. Rev., 37, pp. 275-303Rainer, M., Huck, C.W., Gjerde, D.T., Bonn, G.K., (2009) LC-GC Europe, 22, pp. 448-45
Factorial Design Of Electrolyte Systems For The Separation Of Fatty Acids By Capillary Electrophoresis
In this work, a capillary zone electrophoretic methodology using UV indirect detection (224 nm) for the analysis of fatty acids (FAs) in saponified oils is proposed. The electrolyte consisted of a 5 mmol l-1 phosphate buffer, pH 7, containing 4 mmol l-1 sodium dodecylbenzenesulfonate (SDBS) as chromophore, 4 mmol l-1 dimethyl-β-cyclodextrin and 45% acetonitrile (ACN). The composition of the electrolyte was optimized by a 23 factorial design with triplicate at the central point. The design established practical concentration boundaries for SDBS and ACN. In a defined concentration range of 2-4 mmol l-1, SDBS can certainly be used as a chromophore for indirect detection without imparting excessive baseline noise. For ACN, a suitable interval of 45-55% was found to enhance FAs solubilization without overflowing the system with bubble formation and current interruption. Additionally, the design revealed the importance of dimethyl-β-cyclodextrin in the resolution of difficult pairs and its function as a solubilizing agent for long chain FAs. At the optimized conditions, nine FAs from C10 to C20, including mono- di- and tri-unsaturated C18 fatty acids were baseline separated in less than 10 min. The proposed method was applied to the separation of FAs in edible oils and polyunsaturated fatty acid enriched margarine. Additionally, spectral monitoring at 206 nm was used to confirm peak identity in the samples. © 2001 Elsevier Science B.V. All rights reserved.9241-2533539(1999) PUFA Infocus, 1, pp. 1-8Gutnikov, G., (1995) J. Chromatogr. B, 671, p. 71Helrich, K., (1990) 15th ed. Official Methods of Analysis of the Association of Official Analytical Chemistry, 2, p. 963. , AOAC, Arlington, VAChen, S., Chen, K., Lien, H., (1999) J. Chromatogr. A, 849, p. 357Martin-Hernandez, M.C., Alonso, L., Juarez Fontecha, M., (1988) Chromatographia, 25, p. 87Koza, T., Rezanka, T., Wurst, M., (1989) Folia Microbiol., 34, p. 165Durst, H.D., Milano, M., Kikta, E.J., Connelly, S.A., Grushka, E., (1975) Anal. Chem., 47, p. 1797Jordi, H.C., (1978) J. Liq. Chromatogr., 1, p. 215Miwa, H., Yamamoto, M., Nishida, T., Nunoi, K., Kikuchi, M., (1987) J. Chromatogr., 416, p. 237King, J.W., Adams, E.C., Bidlingmeyer, A., (1982) J. Liq. Chromatogr., 5, p. 275Tsuyama, Y., Uchida, T., Goto, T., (1992) J. Chromatogr., 596, p. 181Kawasaki, H., Maeda, N., Yuki, H., (1990) J. Chromatogr., 516, p. 450Roldan-Assad, J.R., Gareil, P., (1995) J. Chromatogr. A, 708, p. 339Buchberger, W., Winna, K., (1996) Mikrochim. Acta, 122, p. 45Erim, F.B., Xu, X., Kraak, J.C., (1995) J. Chromatogr. A, 694, p. 471Collet, J., Gareil, P., (1997) J. Chromatogr. A, 792, p. 165Zana, R., (1995) Adv. Colloid Interf. Sci., 57, p. 1Verral, R.E., (1995) Chem. Soc. Rev., 24, p. 135Poole, C.F., Poole, S.K., (1997) J. Chromatogr. A, 792, p. 89Akhter, M.S., Alawi, S.M., (2000) Colloids Surf. A, 175, p. 311Drange, E., Lundanes, E., (1997) J. Chromatogr. A, 771, p. 301Miksík, I., Deyl, Z., (1998) J. Chromatogr. A, 807, p. 111Kibler, M., Bächmann, K., (1999) J. Chromatogr. A, 836, p. 325Petersson, M.A., Hulthe, H., Fogelqvist, E., (1999) J. Chromatogr. A, 854, p. 141Neto, B.B., Scarminio, I.S., Bruns, R.E., (1995) Planejamento e Otimização de experimentos, Editora da Unicamp, 2nd ed.Box, G.E.P., Hunter, W.G., Hunter, J.S., (1978) Statistics For Experimenters. An Introduction To Design, Data Analysis and Model Building, , Wiley, New YorkSchlabach, T.D., Excoffier, J.L., (1988) J. Chromatogr., 439, p. 173McGuffin, V.L., Tavares, M.F.M., (1997) Anal. Chem., 69, p. 15
Terminology For Analytical Capillary Electromigration Techniques [terminologia Para As Técnicas Analíticas De Eletromigração Em Capilares]
[No abstract available]303740744Férard, G., (1994) Pure Appl. Chem, 66, p. 891McNaught, A.D., Wilkinson, A., (1997) Compendium of Chemical Terminology (The Gold Book), , 2nd ed, Blackwell Science: OxfordKnox, J.H., (1994) J. Chromatogr., A, 680, p. 3Ettre, L.E., (1993) Pure Appl. Chem, 65, p. 819Foret, F., Krivankova, L., Bocek, P., (1993) Capillary Zone Electrophoresis, , VHC, WeinheimEngelhardt, H., Beck, W., Schmitt, T., (1996) Capillary Electrophoresis. Methods and Potentials, , Vieweg: WiesbadenCamillari, P., (1998) Capillary Electrophoresis, , 2nd ed, CRC Press: Boca Raton, FLBaker, D.E., (1995) Capillary Electrophoresis, , John Wiley: New YorkKhaledi, M.G., (1998) High-Performance Capillary Electrophoresis, , John Wiley: New YorkKok, W., (2000) Chromatographia supplement, 51Deyl, Z., Svec, F., (2001) Capillary Electrochromatography, , Elsevier Science: AmsterdamBartle, K., Myers, P., (2001) Capillary Electrochromatography, , Royal Society of Chemistry: CambridgeTavares, M.F.M., (1996) Quim. Nova, 19, p. 173Tavares, M.F.M., (1997) Quim. Nova, 20, p. 493Colombara, R., Tavares, M.F.M., Massaro, S., (1997) Quim. Nova, 20, p. 512Jager, A.V., Tavares, M.F.M., (2001) Quim. Nova, 24, p. 363Silva, da, J.A.F., (2003) Quim. Nova, 26, p. 56Gervasio, A.P.G., Lavorante, A.F., Moraes, M.C.B., Giné, M.F., Miranda, C.E.S., Carrilho, E., (2003) Quim. Nova, 26, p. 65Miranda, C.E.S., Carrilho, E., Gervasio, A.P., Giné, M.F., (2002) Quim. Nova, 25, p. 41
Rapid Method For The Determination Of Organic Acids In Wine By Capillary Electrophoresis With Indirect Uv Detection
A capillary electrophoresis method for organic acids in wine was developed and validated. The optimal electrolyte consisted of 10 mmol/L 3,5-dinitrobenzoic acid (DNB) at pH 3.6 containing 0.2 mmol/L cetyltrimethylammonium bromide as flow reverser. DNB was chosen because it has an effective mobility similar to the organic acids under investigation, good buffering capacity at pH 3.6, and good chromophoric characteristics for indirect UV-absorbance detection at 254 nm. Sample preparation involved dilution and filtration. The method showed good performance characteristics: Linearity at 6 to 285 mg/L (r > 0.99); detection and quantification limits of 0.64 to 1.55 and 2.12 to 5.15 mg/L, respectively; separation time of less than 5.5 min. Coefficients of variation for ten injections were less than 5% and recoveries varied from 95% to 102%. Application to 23 samples of Brazilian wine confirmed good repeatability and demonstrated wide variation in the organic acid concentrations. © 2008 Elsevier Ltd. All rights reserved.206548552Arellano, M., Andrianary, J., Dedieu, F., Couderc, F., Puig, P., Method development and validation for the simultaneous determination of organic acid and inorganic acids by capillary zone electrophoresis (1997) Journal of Chromatography A, 765, pp. 321-328Arellano, M., Couderc, F., Puig, P.H., Simultaneous separation of organic and inorganic acids by capillary zone electrophoresis. Application to wines and fruit juices (1997) American Journal of Enology and Viticulture, 48, pp. 408-412Bianchi, F., Careri, M., Corradini, C., Novel approach for the rapid determination of water-soluble organic acids in wine by co-electroosmotic flow capillary zone electrophoresis (2005) Journal of Separation Science, 28, pp. 898-904Castiñeira, A., Peña, R.M., Herrero, C., García-Martín, S., Simultaneous determination of organic acids in wine samples by capillary electrophoresis and UV detection: Optimization with five different background electrolytes (2000) HRC - Journal of High Resolution Chromatography, 23, pp. 647-652Castiñeira, A., Peña, R.M., Herrero, C., García-Martín, S., Analysis of organic acids in wine by capillary electrophoresis with direct UV detection (2002) Journal of Food Composition and Analysis, 15, pp. 319-331De Villiers, A., Lynen, F., Crouch, A., Sandra, P., A robust capillary electrophoresis method for the determination of organic acids in wines (2003) European Food Research and Technology, 217, pp. 535-540Esteves, V.I., Lima, S.S.F., Lima, D.L.D., Duarte, A.C., Using capillary electrophoresis for the determination of organic acids in Port wine (2004) Analytica Chimica Acta, 5131, pp. 163-167García Moreno, M.V., Jurado Campoy, C.J., García Barroso, C., Method devised for determining low molecular weight organic acids in vinic samples by capillary electrophoresis: Validation of the method with real samples (2001) European Food Research and Technology, 213, pp. 381-385Hirokawa, T., Nishino, M., Aoki, N., Kiso, Y., Table of isotacophoretic indices I. Simulating qualitative indices of 287 anionic substances in the range pH 3-10 (1983) Journal of Chromatography, 271, pp. D1-D106Kandl, T., Kupina, S., An improved capillary electrophoresis procedure for the determination of organic acids in grape juice and wine (1999) American Journal of Enology and Viticulture, 50, pp. 155-161Kelly, L., Nelson, R.J., Capillary zone electrophoresis of organic acids and anions (1993) Journal of Liquid Chromatography and Related Technologies, 16, pp. 2103-2112Kenney, B.F., Determination of organic acids in food samples by capillary electrophoresis (1991) Journal of Chromatography A, 546, pp. 423-430Klampfl, C.W., Katzmayr, M.U., Buchberger, W., Separation of inorganic and organic anions by capillary zone electrophoresis with simultaneous indirect UV and conductivity detection (1998) Electrophoresis, 19, pp. 2459-2464(2007) Handbook of capillary and microchip electrophoresis and associated microtechniques. 3rd ed., , Landers J.P. (Ed), CRC Press Inc, Boca RatonLevi, V., Wehr, T., Talmadge, K., Zhu, M., Analysis of organic acids in wines by capillary electrophoresis and HPLC (1993) American Laboratory, 25, pp. 29-32Mato, I., Suárez-Luque, S., Huidobro, J.F., Simple determination of main organic acid in grape juice and wine by using capillary zone electrophoresis with direct UV detection (2007) Food Chemistry, 102, pp. 104-112Moreno, M.V.G., Jurado, C.J., Barroso, C.G., Determination of organic acids by capillary electrophoresis with simultaneous addition of Ca and Mg as complexing agents (2003) Chromatographia, 57, pp. 185-189Ribereau-Gayon, P., Gloris, Y., Maujean, A., Dubourdieu, D., (2000) Handbook of enology, The chemistry of wine, stabilization and treatments, 2. , Wiley, New YorkSaavedra, L., Barbas, C., Validated capillary electrophoresis method for small-anions measurement in wines (2003) Electrophoresis, 24, pp. 2235-2243Sing Fung, Y., Man Lau, K., Analysis of organic acids and inorganic anions in beverage drinks by capillary electrophoresis (2003) Electrophoresis, 24, pp. 3224-3232Stathakis, C., Cassidy, R.M., Effect of electrolyte composition in the capillary electrophoretic separation of inorganic/organic anions in the presence of cationic polymers (1995) Journal of Chromatography A, 699, pp. 353-361Zoecklein, B.W., Fugelsang, K.C., Gump, B.H., Nury, F.S., (1999) Wine analysis and production, , Aspen Publishers Inc, Gaithersbur
Chemical composition of atmospheric particulate matter soluble fraction and meteorological variables in São Paulo state, Brazil Composição química da fração solúvel do material particulado atmosférico e variáveis meteorológicas no estado de São Paulo, Brasil
The objective of this work was to characterize and compare the chemical composition of the PM10 soluble fraction in relation to meteorological variables such as wind direction and air masses backward trajectories. The PM10 was collected during winter of 1999 in two contrasting sites: the São Paulo city and the State Park of Serra do Mar (Cunha) inside the Atlantic Forest Reserve. The aqueous extracts of PM10 were analyzed by Ion Chromatography for major ions (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)) and by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for trace elements (Al, Mn, Fe, Pb, Zn, etc.). In São Paulo, the dominant chemical species were SO4(2-), NO3-, NH4+, Zn, Fe, Al, Ba, Cu, Pb, Mn and Ni while in Cunha, Na+, K+, Cl-, SO4(2-), Zn and Ni were dominant. The chemical composition related to the wind direction during sampling reflected short-range influence due to soil occupation and anthropic activities.<br>Este trabalho teve como objetivo a caracterização e a comparação da composição química da fração solúvel do PM10, com variáveis meteorológicas, tais como, direção do vento e trajetórias de massas de ar. O PM10 foi coletado durante o inverno de 1999 em dois locais contrastantes: na cidade de São Paulo e no Parque Estadual da Serra do Mar (Cunha), Reserva de Mata Atlântica. Os extratos aquosos do PM10 foram analisados por Cromatografia de Íons para quantificação dos íons maiores (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)) e por ICP-MS para quantificação dos elementos traço (Al, Mn, Fe, Pb, Zn, etc.). As espécies químicas que predominaram foram SO4(2-), NO3-, NH4+, Zn, Fe, Al, Ba, Cu, Pb, Mn e Ni em São Paulo, e Na+, K+, Cl-, SO4(2-), Zn e Ni em Cunha. A composição química relacionada com a direção do vento que prevaleceu durante a amostragem, refletiu um transporte de curta escala influenciado pela ocupação do solo e as atividades antrópicas