1,331 research outputs found

    Modelling the Kinked Jet of the Crab Nebula

    Get PDF
    We investigate the dynamical propagation of the South-East jet from the Crab pulsar interacting with supernova ejecta by means of three-dimensional relativistic MHD numerical simulations with the PLUTO code. The initial jet structure is set up from the inner regions of the Crab Nebula. We study the evolution of hot, relativistic hollow outflows initially carrying a purely azimuthal magnetic field. Our jet models are characterized by different choices of the outflow magnetization (σ\sigma parameter) and the bulk Lorentz factor (γj\gamma_{j}). We show that the jet is heavily affected by the growth of current-driven kink instabilities causing considerable deflection throughout its propagation length. This behavior is partially stabilized by the combined action of larger flow velocities and/or reduced magnetic field strengths. We find that our best jet models are characterized by relatively large values of σ\sigma (≳1\gtrsim 1) and small values of γj≃2\gamma_{j}\simeq 2. Our results are in good agreement with the recent X-ray (\textit{Chandra}) data of the Crab Nebula South-East jet indicating that the jet changes direction of propagation on a time scale of the order of few years. The 3D models presented here may have important implications in the investigation of particle acceleration in relativistic outflows.Comment: 15 pages, 20 figure

    A Search for Hard X-Ray Emission from Globular Clusters - Constraints from BATSE

    Get PDF
    We have monitored a sample of 27 nearby globular clusters in the hard X-ray band (20-120 keV) for approximately 1400 days using the BATSE instrument on board the Compton Gamma-Ray Observatory. Globular clusters may contain a large number of compact objects (e.g., pulsars or X-ray binaries containing neutron stars) which can produce hard X-ray emission. Our search provides a sensitive (~50 mCrab) monitor for hard X-ray transient events on time scales of >1 day and a means for observing persistent hard X-ray emission. We have discovered no transient events from any of the clusters and no persistent emission. Our observations include a sensitive search of four nearby clusters containing dim X-ray sources: 47 Tucanae, NGC 5139, NGC 6397, and NGC 6752. The non-detection in these clusters implies a lower limit for the recurrence time of transients of 2 to 6 years for events with luminosities >10^36 erg s^-1 (20-120 keV) and ~20 years if the sources in these clusters are taken collectively. This suggests that the dim X-ray sources in these clusters are not transients similar to Aql~X-1. We also place upper limits on the persistent emission in the range 2-10*10^34 erg s^-1 (2 sigma, 20-120 keV) for these four clusters. For 47 Tuc the upper limit is more sensitive than previous measurements by a factor of 3. We find a model dependent upper limit of 19 isolated millisecond pulsars (MSPs) producing gamma-rays in 47 Tuc, compared to the 11 observed radio MSPs in this cluster.Comment: 20 pages; accepted, ApJ; uu encoded tar file; 7 figure

    Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell

    Full text link
    We discuss the space-and-time-dependent Monte Carlo code we have developed to simulate the relativistic radiation output from compact astrophysical objects, coupled to a Fokker-Planck code to determine the self-consistent lepton populations. We have applied this code to model the emission from a magnetized neutron star accretion shell near the Alfven radius, reprocessing the radiation from the neutron sar surface. We explore the parameter space defined by the accretion rate, stellar surface field and the level of wave turbulence in the shell. Our results are relevant to the emission from atoll sources, soft-X-ray transient X-ray binaries containing weakly magnetized neutron stars, and to recently suggested models of accretion-powered emission from anomalous X-ray pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted for publication in ApJ. Extended introduction and discussio

    The Surprising Crab Nebula

    Full text link
    We will present our study of the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between Sept. 2007 and Sept. 2012, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call "waves". Statistically significant "waves" show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. The Sept. - Oct. 2007 gamma-ray enhancement episode detected by AGILE shows both "wave" and flaring behavior. We extend our analysis to the publicly available Fermi-LAT dataset and show that several additional "wave" episodes can be identified. We discuss the spectral properties of the September 2007 "wave"/flare event and show that the physical properties of the "waves" are intermediate between steady and flaring states. Plasma instabilities inducing "waves" appear to involve spatial distances l∼1016  l \sim 10^{16} \,cm and enhanced magnetic fields B∼(0.5−1) B \sim (0.5 - 1)\,}mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the "wave" phenomenon (Ew∼1042 ergE_w \sim 10^{42} \, \rm erg, where EwE_w is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spindown energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.Comment: 2012 Fermi Symposium proceedings - eConf C12102

    Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts

    Full text link
    We present the main results of a study of spectral and energetics properties of twelve gamma-ray bursts (GRBs) with redshift estimates. All GRBs in our sample were detected by BeppoSAX in a broad energy range (2-700 keV). From the redshift estimates and the good-quality BeppoSAX time-integrated spectra we deduce the main properties of GRBs in their cosmological rest frames. All spectra in our sample are satisfactorily represented by the Band model with no significant soft X-ray excesses or spectral absorptions. We find a positive correlation between the estimated total (isotropic) energies in the 1-10000 keV energy range (E_rad) and redshifts z. Interestingly, more luminous GRBs are characterized also by larger peak energies E_p of their EF(E) spectra. Furthermore, more distant GRBs appear to be systematically harder in the X-ray band compared to GRBs with lower redshifts. We discuss how selection and data truncation effects could bias our results and give possible explanations for the correlations that we found.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    When challenges hinder: An investigation of buyer-imposed stressors on supplier flexibility

    Get PDF
    Working with buyers may drive business growth but can also induce supplier stress. Drawing on Job Demands–Resources (JD-R) theory, this study explored how buyer-imposed work stressors affect supplier flexibility. Employing a scenario-based experiment involving 338 managers, we found that the imposition of challenge stressors increases supplier flexibility when hindrance stressors are low. Conversely, when hindrance stressors are high, imposing challenge stressors reduces supplier flexibility. We also found that supplier bricolage negatively moderates the relationship between buyer-imposed challenge stressors and supplier flexibility. Specifically, we confirmed that suppliers with higher bricolage are less willing to provide flexibility in response to challenge stressors. For practitioners, our study not only identified the type of work stressors they should impose on suppliers to boost flexibility but also highlighted bricolage as an important moderating factor

    A variability analysis of low-latitude unidentified gamma-ray sources

    Get PDF
    We present a study of 40 low-latitude unidentified 3EG gamma-ray sources which were found to be not positionally coincident with any known class of potential gamma-ray emitters in the Galaxy (Romero, Benaglia & Torres, 1999). We have performed a variability analysis which reveals that many of these 40 sources are variable. These sources have, in addition, a steep mean value of the gamma-ray spectral index, =2.41±0.2 = 2.41 \pm 0.2, which, combined with the high level of variability seems to rule out a pulsar origin. The positional coincidences with uncatalogued candidates to supernova remnants were also studied. Only 7 sources in the sample are spatially coincident with these candidates, a result that is shown to be consistent with the expected level of pure chance association. A complementary search for weak radio counterparts was also conducted and the results are presented as an extensive table containing all significant point-like radio sources within the 40 EGRET fields. We argue that in order to produce the high variability, steep gamma-ray spectra, and absence of strong radio counterparts observed in some of the gamma-ray sources of our sample a new class of objects should be postulated, and we analyze a viable candidate.Comment: Paper updated to match the accepted version to appear in Astronomy and Astrophysics, 2001. Tables 5,6,7 and 8 are in ascii format and need to be printed separately. they can also be obtained from http://www.iar.unlp.edu.ar/garra Table 5 is 62 pages long. Download the source to obtain the table
    • …
    corecore