8 research outputs found

    Three-dimensional, Computer-tomographic Analysis of Membrane Proteins (TrkA, caveolin, clathrin) in PC12 Cells

    No full text
    Signaling of nerve growth factor (NGF) and its receptor (TrkA) promotes neuronal differentiation, synapse formation and survival. It has been known that the complex of NGF and TrkA is internalized into the cytoplasm and transported for further signal transduction, but the ultrastructural information of this process is virtually unknown. In order to clarify the relationship between the internalization of TrkA and the membrane-associated proteins (caveolin and clathrin), the localization and three-dimensional structures of those proteins were examined with computer tomography of high voltage electron microscopy in PC12 cells. TrkA immunoreactivity was found only at definite areas in the plasma membrane, as ring and cluster structures. Its 3D image indicated that those cluster structures contained small pits, which did not appear to be typical caveolae in size and shape. 3D images of clathrin and caveolin-1 immunoreactivities indicated that the formation of those small pits was associated with clathrin, but not with caveolin-1. Caveolin-1 immunoreactivity was found as a mesh-like structure just beneath the plasma membrane. These results suggest that clathrin rather than caveolin is mainly involved in the process of TrkA internalization, at least in differentiated PC12 cells

    Cytokinesis of neuroepithelial cells can divide their basal process before anaphase

    No full text
    Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP–anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis
    corecore