243 research outputs found

    Grain size reduction strategies on Eurofer

    Get PDF
    One of the options currently taken into account for the realization of the first DEMO reactor is the "water-cooled blanket". This option implies a minimum irradiation temperature for the blanket material in the range of 280–350 °C. In addition to the DBTT (Ductile to Brittle Transition Temperature) shift due to the DPA (displacement per atom) damage under irradiation, also the issue of the increased embrittlement due to He production must be taken into account. This issue appears even more detrimental and less manageable because the DBBT shift due to the Helium production does not saturate with the dose, as it results from previous works reported in literature. The experimental results and the difference in behaviour between ODS (Oxide Dispersion Strengthened Steels) RAFM (Reduced Activation Ferritic Martensitic) and other FM (Ferritic Martensitic) alloys (EM10, P91) showed that it is possible to improve the resistance to He embrittlement by both intra-granular precipitation of Y-Ti oxides and by decreasing the grain size at the same time. Nevertheless, anyway, the multiplication of the grain boundaries increases the dilution of He on grain surface, delaying the formation of He bubbles on grain boundaries and, therefore, the susceptibility to the He embrittlement. Several grain size reduction strategies have then been investigated on EUROFER both at the austenitization stage, on the PAGS (Prior Austenite Grain Size), and at the tempering stage, on the tempered martensite. The microstructural observations have been carried out by means of SEM (Scanning Electron Microscopy). Also the effect of grain size reduction on the toughness of the material will be taken into account; The DBTTs resulting from impact tests on KLST specimens will be shown. The outcomes of the microstructural observations, as well as the preliminary mechanical characterization (impact tests) will be discussed in this paper. Keywords: EUROFER 97, RAFM steels, Microstructure, Multiple normalization, Asymmetric rolling, Recrystallization, KLS

    Key-Policy Attribute-Based Encryption for Boolean Circuits from Bilinear Maps

    Get PDF
    We propose the first Key-policy Attribute-based Encryption (KP-ABE) scheme for (monotone) Boolean circuits based on bilinear maps. The construction is based on secret sharing and just one bilinear map, and can be viewed as an extension of the KP-ABE scheme in [7]. Selective security of the proposed scheme in the standard model is proved, and comparisons with the scheme in [5] based on leveled multilinear maps, are provided. Thus, for Boolean circuits representing multilevel access structures, our KP-ABE scheme is more efficient than the one in [5]

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications

    Get PDF
    Current energy drivers are pushing research in power generation materials towards improved efficiency and improved environmental impact. In the context of new generation ultra-supercritical (USC) power plant, this is represented by increased efficiency, service temperature reaching 750. °C, pressures in the range of 35-37.5. MPa and associated carbon capture technology. Ni base alloys are primary candidate materials for long term high temperature applications such as boilers. The transition from their current applications, which have required lower exposure times and milder corrosive environments, requires the investigation of their microstructural evolution as a function of thermo-mechanical treatment and simulated service conditions, coupled with modelling activities that are able to forecast such microstructural changes. The lack of widespread microstructural data in this context for most nickel base alloys makes this type of investigation necessary and novel. Alloy INCONEL 617 is one of the Ni-base candidate materials. The microstructures of four specimens of this material crept at temperatures in the 650-750. °C range for up to 20,000. h have been characterised and quantified. Grain structure, precipitate type and location, precipitate volume fraction, size and inter-particle spacing have been determined. The data obtained are used both as input for and validation of a microstructurally-based CDM model for forecasting creep properties

    Linear Bellman combination for control of character animation

    Get PDF
    Controllers are necessary for physically-based synthesis of character animation. However, creating controllers requires either manual tuning or expensive computer optimization. We introduce linear Bellman combination as a method for reusing existing controllers. Given a set of controllers for related tasks, this combination creates a controller that performs a new task. It naturally weights the contribution of each component controller by its relevance to the current state and goal of the system. We demonstrate that linear Bellman combination outperforms naive combination often succeeding where naive combination fails. Furthermore, this combination is provably optimal for a new task if the component controllers are also optimal for related tasks. We demonstrate the applicability of linear Bellman combination to interactive character control of stepping motions and acrobatic maneuvers.Singapore-MIT GAMBIT Game LabNational Science Foundation (U.S.) (Grant 2007043041)National Science Foundation (U.S.) (Grant CCF-0810888)Adobe SystemsPixar (Firm

    Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    Get PDF
    Smart, sustainable and inclusive Blue Growth means also knowing past technology and the paths followed by ancients in order to understand and monitor marine environments. In general, history of Science is a matter that is not enough explored and explained or promoted in high schools or university official programmes, and, usually, scientist do not consider it as an important part of their curricula. However, bad or good ideas, abandoned or forgotten beliefs, concepts, opinions, do still have a great potential for inspiring present and future scientists, no matter in which historical period they may have been formulated: they should be always be taken into consideration, critically examined and observed by a very close point of view, not just as part of the intellectual framework of some obsolete ‘Cabinet of Curiosities’ with limited access except for the chosen few. Moreover, history of Science should be transmitted in a more practical way, with hands-on labs showing the limits and challenges that prior generations of ocean explorers, investigators and seafarers had to face in order to answer to crucial questions as self-orientation in open sea, understanding main currents and waves, predicting meteorological conditions for a safe navigation. Oceanography is a relatively young branch of science, and still needs further approvals and knowledge (National Science Foundation, 2000). The Scientific Dissemination Group (SDG) “La Spezia Gulf of Science” – made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy) - has a decadal experience in initiatives aimed at people and groups of people of all ages, who are keen on science or who can be guided in any case to take an interest in scientific matters (Locritani et al., 2015). Amongst the SDG activities, the tight relationship with the Historical Oceanography Society, the Italian Navy and the Naval Technical Museum (that collects a rich heritage of civilization, technology and culture witnesses, related to the naval history of seamanship from the origins up to nowadays), allowed the creation of a special educational format based on Historical Oceanography, for university and high school students as an integration for their curriculum. The Historical Oceanography Society has provided the major knowledges included in the ancient volumes of its archive, thanks to the availability of its members that also held theoretical and practical lessons during the course. The present paper will describe the one-week special course (about 60 hours of theory and practice with technical visits to Research centres and Museums) that has been planned to be carried out on board of the Italian Training Navy Ship (A. Vespucci) and has been organized in order to give the hints about on board life, as well as theoretical lessons on modern and historical oceanography, hands-on labs on oceanographic instruments from public and private collections, physiology of diving techniques and astronomy. The general aim of this course has been, hence, to give to excellent students all those technological but also creative and imaginative features of our past.PublishedVienna1TM. Formazion

    Efficient Explicit Constructions of Multipartite Secret Sharing Schemes

    Get PDF
    Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. Secret sharing schemes for multipartite access structures have received considerable attention due to the fact that multipartite secret sharing can be seen as a natural and useful generalization of threshold secret sharing. This work deals with efficient and explicit constructions of ideal multipartite secret sharing schemes, while most of the known constructions are either inefficient or randomized. Most ideal multipartite secret sharing schemes in the literature can be classified as either hierarchical or compartmented. The main results are the constructions for ideal hierarchical access structures, a family that contains every ideal hierarchical access structure as a particular case such as the disjunctive hierarchical threshold access structure and the conjunctive hierarchical threshold access structure, the constructions for three families of compartmented access structures, and the constructions for two families compartmented access structures with compartments. On the basis of the relationship between multipartite secret sharing schemes, polymatroids, and matroids, the problem of how to construct a scheme realizing a multipartite access structure can be transformed to the problem of how to find a representation of a matroid from a presentation of its associated polymatroid. In this paper, we give efficient algorithms to find representations of the matroids associated to several families of multipartite access structures. More precisely, based on know results about integer polymatroids, for each of those families of access structures above, we give an efficient method to find a representation of the integer polymatroid over some finite field, and then over some finite extension of that field, we give an efficient method to find a presentation of the matroid associated to the integer polymatroid. Finally, we construct ideal linear schemes realizing those families of multipartite access structures by efficient methods
    corecore