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Abstract. We propose the first Key-policy Attribute-based Encryption (KP-ABE) scheme
for (monotone) Boolean circuits based on bilinear maps. The construction is based on secret
sharing and just one bilinear map, and can be viewed as an extension of the KP-ABE scheme in
[7]. Selective security of the proposed scheme in the standard model is proved, and comparisons
with the scheme in [5] based on leveled multilinear maps, are provided. Thus, for Boolean
circuits representing multilevel access structures, our KP-ABE scheme is more efficient than
the one in [5].

1 Introduction

Attribute-based encryption (ABE) is a new paradigm in cryptography, where messages are
encrypted and decryption keys are computed in accordance with a given set of attributes
and an access structure on the set of attributes. There are two forms of ABE: key-policy
ABE (KP-ABE) [7] and ciphertext-policy ABE (CP-ABE) [2]. In a KP-ABE, each message
is encrypted together with a set of attributes and the decryption key is computed for the
entire access structure; in a CP-ABE, each message is encrypted together with an access
structure while the decryption keys are given for specific sets of attributes. In this paper we
focus only on KP-ABE.

ABE was introduced in [10] in the form of fuzzy identity-based encryption, as a ization
of identity-based encryption [11]. The first KP-ABE scheme was proposed in [7], where the
access structures were specified by monotone Boolean formulas (monotone Boolean circuits
of fan-out one, with one output wire). An extension to the non-monotonic case has later
appeared in [9]. Both approaches [7] and [9] take into consideration only access structures
defined by Boolean formulas. However, there are access structures of practical importance
that cannot be represented by Boolean formulas, such as multilevel access structures [14,
15]. In such a case, defining KP-ABE schemes for access structures defined by Boolean
circuits becomes a necessity. The first solution to this problem was proposed in [5] by using
leveled multilinear maps (sets of bilinear maps with some special property). A little later,
a lattice-based construction was also proposed [6].

Contribution The KP-ABE schemes for Boolean circuits proposed so far are either based
on leveled multilinear maps or on lattices. Direct extensions of the scheme in [7] to Boolean
circuits face the backtracking attack [5]. Moreover, it was conjectured in [5] that such exten-
sions cannot be realized using bilinear maps.

In this paper we show that an extension of the KP-ABE scheme in [7] to accommodate
the case of (monotone) Boolean circuits is possible. In order to reach this objective, the
Boolean circuits are endowed with explicit FANOUT-gates. The secret sharing procedure
for such circuits works top-down as in [7]. The outputs of FANOUT-gates are encrypted and



the encryption keys are “transmitted” to their input wires in order to be further processed
by the sharing procedure. This prevents the backtracking attack because it is not possible
to compute the value at an output wire (of a FANOUT-gate) by knowing the value at the
other output wire, without computing bottom-up the value at the input wire.

The selective security of our KP-ABE scheme is proved in the standard model under
the decisional bilinear Diffie-Hellman assumption.

We then discuss the complexity of our scheme and compare it with the scheme in [5].
Thus, if the FANOUT-gates are not path-connected in the Boolean circuit, our scheme
may perform better than the one in [5]. We prove this by considering Boolean circuits
representing conjunctive and disjunctive multilevel access structures, and we show that our
scheme distributes shorter decryption keys than the one in [5]. Whatever the considered
Boolean circuit, our KP-ABE scheme has the advantage of using just one bilinear map
while the scheme in [5] uses leveled multilinear maps whose size quadratically depends on
the Boolean circuit depth.

Paper organization The paper is organized into eight sections. The next section fixes
the basic terminology and notation used throughout the paper. The third section discusses
the scheme in [7], illustrates the backtracking attack, discussed the solution in [5] which
thwarts the backtracking attack, and gives an informal overview of our solution. It also
fixes the terminology on the Boolean circuits we use. Our construction is presented in the
fourth section, its security is discussed in the fifth one, while the sixth section presents
some comparisons between our scheme and the one in [5]. The seventh section shows that
our scheme performs better than the one in [5] for Boolean circuits representing multilevel
access structures. We conclude in the last section.

2 Preliminaries

Access structures Recall first that [13], given a non-empty finite set U whose elements are
called attributes in our paper, an access structure over U is any set S of non-empty subsets
of U . S is called monotone if it contains all subsets B ⊆ U with A ⊆ B for some A ∈ S. The
subsets (of U) that are in S are called authorized sets, while those not in S, unauthorized
sets. An authorized set A is minimal if there is no B ∈ S such that B ⊂ A.

It is customary to represent access structures by Boolean circuits (for more details about
Boolean circuits the reader is refereed to [1]). A Boolean circuit has a number of input wires
(which are not gate output wires), a number of output wires (which are not gate input wires),
and a number of OR-, AND-, and NOT-gates. The OR- and AND-gates have two input
wires, while NOT-gates have one input wire. All of them may have more than one output
wire. That is, the fan-in of the circuit is at most two, while the fan-out may be arbitrarily
large but at least one. A Boolean circuit is monotone if it does not have NOT-gates, and it
is of fan-out one if all gates have fan-out one. In this paper all Boolean circuits have exactly
one output wire. Boolean circuits of fan-out one correspond to Boolean formulas.

If the input wires of a Boolean circuit C are in a one-to-one correspondence with the
elements of U , we will say that C is a Boolean circuit over U . Each A ⊆ U evaluates the circuit
C to one of the Boolean values 0 or 1 by simply assigning 1 to all input wires associated
to elements in A, and 0 otherwise; then the Boolean values are propagated bottom-up to
all gate output wires in a standard way. C(A) stands for the Boolean value obtained by
evaluating C for A. The access structure defined by C is the set of all A with C(A) = 1.
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Figure 1a pictorially represents a Boolean circuit C over U = {1, 2, 3, 4}. For A = {1, 2}
we have C(A) = 1 and for B = {2, 4} we have C(B) = 0.

Attribute-based encryption A KP-ABE scheme consists of four probabilistic polynomial-
time (PPT) algorithms [7]:

Setup(λ): this is a PPT algorithm that takes as input the security parameter λ and outputs
a set of public parameters PP and a master key MSK;

Enc(m,A,PP ): this is a PPT algorithm that takes as input a message m, a non-empty set
of attributes A ⊆ U , and the public parameters, and outputs a ciphertext E;

KeyGen(C,MSK): this is a PPT algorithm that takes as input an access structure C (given
as a Boolean circuit) and the master key MSK, and outputs a decryption key D (for
the entire Boolean circuit C);

Dec(E,D): this is a deterministic polynomial-time algorithm that takes as input a cipher-
text E and a decryption key D, and outputs a message m or the special symbol ⊥.

The following correctness property is required to be satisfied by any KP-ABE scheme: for
any (PP,MSK)← Setup(λ), any Boolean circuit C over a set U of attributes, any message
m, any A ⊆ U , and any E ← Enc(m,A,PP ), if C(A) = 1 then m = Dec(E,D), for any
D ← KeyGen(C,MSK).

Security models We consider the standard notion of selective security for KP-ABE [7].
Specifically, in the Init phase the adversary (PPT algorithm) announces the set A of at-
tributes that he wishes to be challenged upon, then in the Setup phase he receives the public
parameters PP of the scheme, and in Phase 1 oracle access to the decryption key generation
oracle is granted for the adversary. In this phase, the adversary issues queries for decryp-
tion keys for access structures defined by Boolean circuits C, provided that C(A) = 0. In the
Challenge phase the adversary submits two equally length messages m0 and m1 and receives
the ciphertext associated to A and one of the two messages, say mb, where b← {0, 1}. The
adversary may receive again oracle access to the decryption key generation oracle (with
the same constraint as above); this is Phase 2. Eventually, the adversary outputs a guess
b′ ← {0, 1} in the Guess phase.

The advantage of the adversary in this game is P (b′ = b) − 1/2. The KP-ABE scheme
is secure (in the selective model) if any adversary has only a negligible advantage in the
selective game described above.

Bilinear maps and the decisional BDH assumption Given G1 and G2 two multiplicative
cyclic groups of prime order p, a map e : G1 ×G1 → G2 is called bilinear if it satisfies:

– e(xa, yb) = e(x, y)ab, for any x, y ∈ G1 and a, b ∈ Zp;
– e(g, g) is a generator of G2, for any generator g of G1.

G1 is called a bilinear group if the operation in G1 and e are both efficiently computable.

The Decisional Bilinear Diffie-Hellman (DBDH) problem in the bilinear group G2 is the
problem to distinguish between e(g, g)abc and e(g, g)z given g, ga, gb, and gc, where g is a
generator of G1 and a, b, c, and z are randomly chosen from Zp. The DBDH assumption for
G2 states that no PPT algorithm A can solve the DBDH problem in G2 with more than a
negligible advantage.
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3 The Backtracking Attack

The closest approaches to, and the starting point of, our paper are [7, 5]. [7] introduces
the first KP-ABE scheme. The main idea here is quite elegant and simple, and can be
summarized as follows:

– let e : G1 ×G1 → G2 be a bilinear map and g a generator of G1, where G1 and G2 are
of prime order p;

– to encrypt a message m ∈ G2 by a set A of attributes, just multiply m by e(g, g)ys,
where y is a random integer chosen in the setup phase and s is a random integer chosen
in the encryption phase. Moreover, an attribute dependent quantity is also computed
for each attribute i ∈ A;

– the decryption key is generated as follows. The integer y is shared to all attributes so
that it can be recovered only by authorized sets of attributes (the authorized sets are
defined by monotone Boolean formulas). The sharing procedure is based on linear secret
sharing schemes because linear combinations can be efficiently obtained as exponents of
the bilinear map e. The shares associated to attributes are then used to compute the
decryption key (which consists of a key component for each attribute);

– in order to decrypt me(g, g)ys, one has to compute e(g, g)ys. This can be done only if A
is an authorized set of attributes. The computation of e(g, g)ys is bottom-up, starting
from the key components associated to the attributes in A.

It was pointed out in [5] that the construction in [7] cannot be used to design a KP-ABE
scheme for Boolean circuits. The reason is that, in case of OR-gates, any value computed
at an input wire should be the same with the value computed at the other input wire.
Therefore, knowing the value at one of the input wires of an OR-gate implicitly leads to
the knowledge of the value at the other input wire (although these values are computed by
different workflows). This aspect leads to the possibility of computing the value at the output
wire of the circuit starting from values associated to some unauthorized set of attributes. In
order to illustrate this attack, called the backtracking attack in [5], we consider the monotone
Boolean circuit in Figure 1a (remark that it has a fan-out of two). As we can easily see, the
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Fig. 1. a) The backtracking attack; b) Boolean circuits with FANOUT-gates

minimal authorized sets are {1, 2}, {1, 3}, and {3, 4}. Consider now the following scenario.
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Assume that a given message is encrypted by the authorized set of attributes {2, 3, 4} and
a user with the set of attributes {1, 2, 4} asks for a decryption key. His set of attributes is
authorized and, therefore, he has the right to obtain a decryption key. According to the
definition of a KP-ABE, the decryption key for the set {1, 2, 4} of attributes must not be
valid to decrypt a message encrypted by the attributes {2, 3, 4}. However, the user can do
as follows. The value computed at the input wire 2 “migrates” to the input wire 3 due to
the existence of the OR-gate Γ1. Corroborating this with the values at the input wires 1
and 4, a valid value will be computed at the output wire. This value is the same as the
value computed by the set {2, 3, 4} and, therefore, it allows the decryption of the message.
Remark also that {2, 4} = {1, 2, 4} ∩ {2, 3, 4} is unauthorized.

The backtracking attack illustrated above cannot occur in case of access structures
defined by Boolean formulas as in [7] because, in such a case, the input wires of OR-gates
are not used by any other gates (the circuit is of fan-out one).

To avoid the backtracking attack, [5] uses a “one-way” construction in evaluating mono-
tone Boolean circuits. The idea is the next one:

– consider a leveled multilinear map, which consists of k groups G1, . . . , Gk of prime order
p, k generators g1, . . . , gk of these groups, respectively, and a set {ei,j : Gi × Gj →
Gi+j |i, j ≥ 1, i + j ≤ k} of bilinear maps satisfying ei,j(g

a
i , g

b
j) = gabi+j , for all i and j

and all a, b ∈ Z∗p, where k is the circuit depth plus one;

– the key components are associated to the circuit input wires and to each gate output
wire (in [5], each gate has one output wire which may be used by more than one gate);

– the circuit is evaluated bottom-up and the values associated to output wires of gates on
level j are powers of gj+1;

– as the mappings ei,j work only in the “forward” direction, it is not feasible to invert
values on the level j + 1 in order to obtain values on the level j, defeating thus the
backtracking attack.

As with respect to the existence of leveled multilinear, [5] shows how this scheme can be
translated into the GGH graded algebra framework [4].

Looking more carefully at the example in Figure 1a, we remark that the value obtained
at the wire 3 via the input wire 1 and the OR-gate Γ1 is then used at the AND-gate Γ2.
The backtracking attack illustrated above would be thwarted if the two outputs from 3
(one leading to Γ1 and one leading to Γ2) were different. This is in fact the starting point of
our proposal. That is, we use explicit FANOUT-gates with encrypted outputs to multiply
input wires and gate output wires. Therefore, the Boolean circuits we use in the rest of the
paper have FANOUT-gates too. A FANOUT-gate has one input wire and at least two output
wires, and its role is to propagate its input to all outputs. In this way, the fan-out of all logic
gates will be restricted to one. Moreover, as FANOUT-gates may have arbitrary fanout, we
assume that no two FANOUT-gates are directly connected. Figure 1b pictorially represents
the Boolean circuit in Figure 1a using FANOUT-gates (“FO” stands for “FANOUT”).

We close this section by informally describing our solution and why it thwarts the
backtracking attack (details will be given in the next sections). In fact, it is quite similar to
the one described at the beginning of this section:

– the information at the output wires of OR-gates are simple passed to the input wires,
while the information at the output wires of AND-gates are shared as in the Karnin-
Greene-Hellman scheme [8];

5



– the FANOUT-gates, which are not present in [7], are processed by associating random
keys to their input wires in order to deal with the output wires. In this way, the value
computed at one of the output wires cannot be used to derive values at the other output
wires. For instance, the value computed at the input wire 2 in Figure 1b can “migrate”
to the left output wire of the FANOUT-gate Γ0, but cannot be used as an input value
for the AND-gate Γ2.

4 Our Construction

In this section we propose a KP-ABE scheme for monotone Boolean circuits based on bilin-
ear maps. The restriction to Boolean circuits that are monotone does not constitute a loss
of generality (see page 7 in [5]). However, recall from the previous section that our Boolean
circuits have FANOUT-gates and all the logic gates have fan-out one. Assuming that the
wires are labeled, we may write the gates as tuples (w1, w2, OR,w), (w1, w2, AND,w), and
(w,FANOUT,w1, . . . , wj), where j ≥ 2. The elements before (after) the gate name are
the input (output) wires of the gate. The output wire of a Boolean circuit will always be
denoted by o, and the input wires by 1, . . . , n (assuming that the circuit has n input wires).

Before describing our KP-ABE scheme assume that two multiplicative cyclic groups G1

and G2 of prime order p are given, together with a generator g of G1 and a bilinear map
e : G1 × G1 → G2. As our KP-ABE scheme is based on secret sharing, we will define two
procedures, one for secret sharing and the other one for secret reconstruction.

The sharing procedure, denoted Share(y, C), inputs a Boolean circuit C and a value
y ∈ Zp, and outputs two functions S and P with the following meaning:

1. S assigns to each wire of C a list of values in Zp;
2. P assigns to each output wire of a FANOUT-gate a list of pairs of values in G1.

By a list of length n of elements over a setX we understand any vector L ∈ Xn. |L| stands for
the length of L, L1L2 for the concatenation of two lists L1 and L2, and pos(L) = {1, . . . , |L|}
for the set of positions in the list L. L(i) denotes the ith element of L. If L is a list of lists,
then L(i, j) denotes the jth element of the list L(i).

Now, the sharing procedure is the following one.

Share(y, C)

1. Initially, all gates of C are unmarked;
2. S(o) := (y);
3. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) = L, then mark Γ and assign
S(w1) := L and S(w2) := L;

4. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) = L, then mark Γ and
do the followings:
(a) for each i ∈ pos(L) choose uniformly at random x1i ∈ Zp and compute x2i such that

L(i) = (x1i + x2i ) mod p;
(b) compute L1 = (x1i |1 ≤ i ≤ |L|) and L2 = (x2i |1 ≤ i ≤ |L|);
(c) assign S(w1) := L1 and S(w2) := L2;

5. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wk) = Lk for
all 1 ≤ k ≤ j, then mark Γ and, for each 1 ≤ k ≤ j, do the followings:
(a) for each i ∈ pos(Lk) choose uniformly at random ai ∈ Zp and compute bi such that

Lk(i) = (ai + bi) mod p;
(b) compute L′k = (ai|1 ≤ i ≤ |Lk|) and P (wk) := (gbi |1 ≤ i ≤ |Lk|);
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(c) Assign S(w) := L′1 · · ·L′j ;
6. repeat the last three steps above until all gates get marked.

We will write (S, P ) ← Share(y, C) to denote that (S, P ) is an output of the probabilistic
algorithm Share on input (y, C). S(i) will be called the list of shares of the input wire i
associated to the secret y (1 ≤ i ≤ n). Figure 2a generically illustrates the procedure Share.

We define now a reconstruction procedure Recon(C, P, V, gs) which reconstructs a “hid-
den form” of the secret y from “hidden forms” of shares associated to some set A of at-
tributes. This procedure is deterministic and outputs an evaluation function R which assigns
to each wire a list of values in G2 ∪ {⊥}. The notation and conventions here are as follows:

– C is a monotone Boolean circuit with n input wires;
– (S, P ) is an output of Share(y, C), for some secret y;
– s ∈ Zp;
– V = (V (i)|1 ≤ i ≤ n), where V (i) is either a list (e(g, g)αi |1 ≤ j ≤ |S(i)|) for some
αi ∈ Zp, or a list of |S(i)| undefined values ⊥, for all 1 ≤ i ≤ n;

– ⊥ is an undefined value, not in G2, for which the following conventions are adopted:
• ⊥ < x, for all x ∈ G2;
• ⊥ · z = ⊥, z/⊥ = ⊥, and ⊥z = ⊥, for all z ∈ G2 ∪ {⊥}.

The reconstruction procedure can now be described as follows.

Recon(C, P, V, gs)

1. Initially, all gates of C are unmarked;
2. R(i) := V (i), for all i ∈ U ;
3. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and both R(w1) and R(w2) were de-

fined, then mark Γ and assign R(w, i) := sup{R(w1, i), R(w2, i)}, for all 1 ≤ i ≤ |R(w1)|
(remark that |R(w1)| = |R(w2)| and, for any i, if R(w1, i) 6= R(w2, i) then either
R(w1, i) = ⊥ or R(w2, i) = ⊥);

4. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and both R(w1) and R(w2) were
defined, then mark Γ and assign R(w, i) := R(w1, i) · R(w2, i), for all 1 ≤ i ≤ |R(w1)|
(remark that |R(w1)| = |R(w2)|);

5. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and R(w) was defined,
then mark Γ and do the followings:
(a) split R(w) into j lists R(w) = R1 · · ·Rj with |Rk| = |P (wk)| for all 1 ≤ k ≤ j (see

the sharing algorithm for correctness);
(b) R(wk, i) := Rk(i) · e(P (wk, i), g

s), for all 1 ≤ k ≤ j and for all 1 ≤ i ≤ |Rk|;
6. repeat the last three steps above until all gates get marked.

We are now in a position to define our KP-ABE scheme, called KP-ABE Scheme.

KP-ABE Scheme

Setup(λ, n): the setup algorithm uses the security parameter λ to choose a prime p, two
multiplicative groups G1 and G2 of prime order p, a generator g of G1, and a bilinear
map e : G1 × G1 → G2. Then, it defines the set of attributes U = {1, . . . , n}, chooses
y ∈ Zp and, for each attribute i ∈ U , chooses ti ∈ Zp. Finally, the algorithm outputs the
public parameters

PP = (p,G1, G2, g, e, n, Y = e(g, g)y, (Ti = gti |i ∈ U))

and the master key MSK = (y, t1, . . . , tn);
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Encrypt(m,A,PP ): the encryption algorithm encrypts a message m ∈ G2 by a non-empty
set A ⊆ U of attributes as follows:
– s← Zp;
– output E = (A,E′ = mY s, (Ei = T si = gtis|i ∈ A), gs);

KeyGen(C,MSK): the decryption key generation algorithm generates a decryption key D
for the access structure defined by a monotone Boolean circuit C with n input wires as
follows:
– (S, P )← Share(y, C);
– output D = ((D(i)|i ∈ U), P ), where D(i) = (gS(i,j)/ti |1 ≤ j ≤ |S(i)|), for all i ∈ U ;

Decrypt(E,D): given E and D as above, the decryption works as follows:
– compute VA = (VA(i)|i ∈ U), where

VA(i, j) = e(Ei, D(i, j)) = e(gtis, gS(i,j)/ti) = e(g, g)S(i,j)s

for all i ∈ A and 1 ≤ j ≤ |S(i)|, and VA(i) is a list of |S(i)| symbols ⊥, for all
i ∈ U −A;

– R := Recon(C, P, VA, gs);
– m := E′/R(o, 1) (recall that o is the output wire of C).

Theorem 1. The KP-ABE Scheme above satisfies the correctness property. That is, us-
ing the notation above, for any encryption E = (A,mY s, (Ei|i ∈ A), gs), any circuit C
with n inputs and C(A) = 1, and any (S, P ) ← Share(y, C), the valuation R returned by
Recon(C, P, VA, gs) satisfies R(o, 1) = Y s.

Proof. By a simple inspection of the Share and Recon procedures. ut

5 Security Issues

We begin by showing that our scheme is resistant to the backtracking attack. This will
be achieved by associating an access tree TC to a Boolean circuit C and showing that the
backtracking attack succeeds on C if and only if it succeeds on TC . Then, our claim will
follow because the backtracking attack does not work in access trees.

The construction of TC consists of multiplying each wire of C as many times as paths are
from the wire to the output wire (the number of such paths gives the numbers of shares the
wire receives in the sharing process performed by the procedure Share). Then, each wire is
labeled in order to distinguish the path associated to it. This is done by splitting up each
FANOUT-gate Γ with j ouput wires into j pseudo-gates Γ 1, . . . , Γ j , each with one input
and one output wire (the kth output wire of Γ is the output wire of Γ k, for all 1 ≤ k ≤ j).
If we collect all these exponents on the path from an wire to the output wire, we obtain a
label which uniquely identifies the wire. The wires with an empty label have exactly one
path from them to the output wire. For instance, the two wires 3 in Figure 2b have, one
of them the label 1 and the other one the label 2. The wires 1, 2, and 4 in the same figure
have all an empty label.

If a wire w of C receives a list S(w) of shares by the Share procedure applied to C, then
it is straightforward to see that each share S(w, j) uniquely corresponds to some label uw,j
as defined above. In the tree TC , the wire (w, uw,j) will receive the share S(w, j).

This technique “unfolds” C with its lists of shares into a tree TC which has exactly one
share for each wire. Now, it is straightforward to see that the backtracking attack succeeds
on C if and only if it succeeds on TC . As the backtracking attack does not work in access
trees, our claim above follows.
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Fig. 2. The construction of TC

Theorem 2. The KP-ABE Scheme is secure in the selective model under the decisional
bilinear Diffie-Hellman assumption.

Proof. In Appendix 9. ut

6 Complexity of the Construction

We will discuss in this section the complexity of our construction (KP-ABE Scheme) and
we will compare it with the complexity of the construction provided in [5].

As our scheme uses just one bilinear map, the only question we have to answer with
respect to the complexity of our construction is about the size of the decryption key. Assume
that the Boolean circuit has n input wires and r FANOUT-gates of fanout at most j. Two
cases are to be considered:

Case 1: there is no path between any two FANOUT-gates. In this case, by the sharing
procedure, exactly r input wires will receive at most j shares (but at least two), and
the other input wires will receive exactly one share. This leads to at most n+ r(j − 1)
key components, and this is the minimum size of the decryption key (remark also that
r ≤ n in this case);

Case 2: there are paths between FANOUT-gates. In this case, the FANOUT-gates on the
highest level in the circuit may transmit the j shares collected at their input wires to
FANOUT-gates on the previous level. The sharing procedure will associate now at most
j2 shares to the input wires of these gates. This reasoning shows that the maximum
number of shares some input wires of the circuit may receive is at most jα, where α is
the number of levels that contain FANOUT-gates (α is less than or equal to miminum
of r and the circuit depth).

The approach in [5] associates keys to the input wires of the circuit and to its output
gates. Each input wire gets two keys, each OR-gate output wire gets four keys, and each
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AND-gate output wire gets three keys. The approach does not use explicit FANOUT-gates,
but an output wire of some gate may be used as an input wire for more than one gate.
Therefore, the total number of keys is bounded from below by 2n+ 3q and from above by
2n + 4q, where q is the number of gates. The Boolean circuits in [5] can be transformed
into our formalism if we replace each wire which is used by j ≥ 2 gates by a FANOUT-gate
with j outputs. In this way, one can easily remark that q depends on both the number r of
FANOUT-gates and on the maximum number j of outputs of these FANOUT-gates.

Another main difference between our scheme and the one in [5] consists of the number
of bilinear maps used by them. While ours uses just one bilinear map, the one in [5] uses
a leveled multilinear map with `(` + 1)/2 bilinear map components interrelated with each
other (see Section 3), where ` is the circuit depth.

7 Extensions and Applications

The above section shows that our KP-ABE Scheme may be more efficient than the one
in [5] when the Boolean circuits do not have FANOUT-gates connected between them by
paths. We will show in this section that the Boolean circuits representing multilevel access
structures [12, 14] fulfill this property. For a compact representation of multilevel access
structures we need Boolean circuits with threshold gates (as in [7]). An (a, b)-threshold gate,
where a and b are integers satisfying 1 ≤ a ≤ b and b ≥ 2, is a logic gate with b input
wires and one output wire. The output wire of such a gate is evaluated to the truth value 1
whenever at least a input wires of the gate are assigned to the truth value 1. OR-gates are
(1, 2)-threshold gates, while AND-gates are (2, 2)-threshold gates.

A disjunctive multilevel access structure [12] over a set U of attributes is a tuple (a,U ,S),
where a = (a1, . . . , ak) is a vector of positive integers satisfying 0 < a1 < · · · < ak, U =
(U1, . . . ,Uk) is a partition of U (that is, all Ui are non-empty and their union is U), and S
is defined by:

S = {A ⊆ U|(∃1 ≤ i ≤ k)(|A ∩ (∪ij=1Uj)| ≥ ai)}.

If we replace “∃” by “∀” in the above definition, we obtain the concept of conjunctive
multilevel access structure [14]. It is well-known, and not difficult to prove (see Appendix
10), that disjunctive and conjunctive multilevel access structures cannot be represented by
Boolean formulas. Using Boolean circuits, these access structures can be easily represented
as in Figure 3. Moreover, the FANOUT-gates are in between the first two levels.

Our KP-ABE Scheme can be easily adapted to accommodate threshold gates. Assume
that LSSS is a probabilistic linear secret sharing scheme [7] such that, given a and b as
above, and given a master secret x ∈ Zp, the scheme outputs b shares x1, . . . , xb such that
x can be uniquely reconstructed from any a shares. Moreover, assume that there exists an
associated and efficient deterministic procedure LSSS−1 such that

LSSS−1(e(g, g)xi1s, . . . , e(g, g)xias) = e(g, g)xs,

for any a shares xi1 , . . . , xia and any s ∈ Zp.
Shamir’s threshold secret sharing scheme satisfies this property and it was used in [7]

exactly with this purpose.
Define now a procedure Share′ obtained from Share by replacing the steps 3 and 4 by

just one step:

3’. If Γ = (w1, . . . , wb, (a, b), w) is an unmarked (a, b)-threshold gate and S(w) = L, then
mark Γ and do the followings:
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Level

3

2

1

0 1 n1 nk−2 + 1 nk−1 nk−1 + 1 nk = n

o

FO FO FO FO

(a1, n1) (ak−1, nk−1) (ak, nk)

(z, k)

· · · · · · · · ·

· · ·

· · ·

Fig. 3. Boolean circuit representation of multilevel access structure: z is 1 for the disjunctive case, and k for
the conjunctive case.

(a) for each i ∈ pos(L), run LSSS and obtain the shares x1i , . . . , x
b
i ;

(b) for each 1 ≤ j ≤ b compute the list Lj from L by replacing L(i) by xji ;
(c) assign S(wj) := Lj , for all 1 ≤ j ≤ b;

The corresponding reconstruction procedure Recon′ is obtained by replacing the steps
3 and 4 in Recon by just one step:

3’. If Γ = (w1, . . . , wb, (a, b), w) is an unmarked (a, b)-threshold gate and R(wj) was defined
for all 1 ≤ j ≤ b, then mark Γ and assign R(w) by

R(w, i) := sup{LSSS−1(R(wi1 , i), . . . , R(wia , i))|i1, . . . , ia ∈ {1, . . . , b}},

for all 1 ≤ i ≤ |R(w1)|;

The new ABE scheme, denoted KP-ABE Scheme′, is obtained from KP-ABE Scheme by
replacing Share and Recon by Share′ and Recon′, respectively. Its security can be proved
as for the KP-ABE Scheme.

The number of key components distributed by our KP-ABE Scheme’ when applied to a
multilevel access structure as in Figure 3 is

n1 · k + (n2 − n1) · (k − 1) + · · ·+ (nk − nk−1) · 1

If we approximate n1 and ni−ni−1 by the average value n/k, for all 2 ≤ i ≤ k, the average
number of the decryption key components is n(k + 1)/2.

The KP-ABE scheme in [5] can be easily adapted to accommodate (1, b)- and (b, b)-
threshold gates. In the first case 2b key components are associated to the gate, while in the
second case b + 1 key components are associated to the gate. However, there is no direct
way to accommodate (a, b)-threshold gates when 1 < a < b. The indirect way is to consider
C(b, a) threshold gates of type (a, a) and one threshold gate of type (1, C(b, a)) (C(b, a)
stands for the number of combinations of b taken a). Therefore, the number of decryption
key components in case of a multilevel access structure can be approximated as follows:
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Case 1: ai = ni, for all i. In this case, the number of key components is

2n+

k∑
i=1

(C(ni, ni) + 1) + (2k + 1− z) = 2n+

k∑
i=1

(ni + 1) + (2k + 1− z)

If we write each ni in the form

ni = n1 + (n2 − n1) + · · ·+ (ni − ni−1)

and approximate n1 and nj−nj−1 by the average value n/k, for all 2 ≤ j ≤ i, we obtain
the average number of the decryption key components as being n(k+5)/2+(3k+1−z),
where z = 1 for the disjunctive case and z = k for conjunctive case;

Case 2: ai < ni, for all i. In this case, ai ≥ i for all i. Using the inequality C(ni, ai) ≥ ni,
we can bound from below the number of key components by

2n+

k∑
i=1

(ai+1)C(ni, ai)+

k∑
i=1

2C(ni, ai)+(2k+1−z) ≥ 2n+

k∑
i=1

(i+3)ni+(2k+1−z).

If we apply the same reasoning as in the previous case to the right hand side of this
inequality, we obtain the average estimate (2 + (k + 1)(k + 5)/3)n + (2k + 1 − z) (z is
as above).

Moreover, the leveled multilinear map has six bilinear map components, but only three of
them are used (the approach in [5] counts three levels).

Our discussion so far, summarized in Table 1 below, shows clearly that our approach is
more efficient than the one in [5] for multilevel access structures.

Scheme Average no. of keys No. of bilinear maps

KP-ABE scheme in [5]

Case 1: n k+5
2

+ 3k + 1− z

Case 2: ≥
(

2 + (k+1)(k+5)
3

)
n + 2k + 1− z

3

Our KP-ABE Scheme′ n k+1
2 1

Table 1. Comparisons between the scheme in [5] and our scheme for multilevel access structures

8 Conclusions

We have proposed in this paper a KP-ABE scheme for monotone Boolean circuits. The
scheme is based on secret sharing and just one bilinear map, and can be viewed as an
extension of the scheme in [7]. It is in fact the first KP-ABE scheme for monotone circuits
based on bilinear maps.

The efficiency of our scheme depends on the number of FANOUT-gates and their po-
sitions in the circuit. Thus, for Boolean circuits representing multilevel access structures
our scheme performs better than the one in [5]. For more “complex” Boolean circuits, the
KP-ABE scheme in [5] may have a better complexity than ours with respect to the number
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of decryption keys. However, it faces the problem of computing leveled multilinear maps.
Although some progress has recently been achieved along this direction [4, 3], working with
leveled multilinear maps is far more expensive than working with just one bilinear map.

Our KP-ABE Scheme associates at least two keys to each input wire of a FANOUT-
gate. Finding ways to reduce the number of keys would be extremely helpful in order to
reduce the complexity of the scheme.
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9 Appendix

In this appendix to prove the security of our KP-ABE Scheme.

Theorem 2. The KP-ABE Scheme is secure in the selective model under the decisional
bilinear Diffie-Hellman assumption.

Proof. It is sufficient to prove that for any adversary A with an advantage η in the selective
game for KP-ABE Scheme, a PPT algorithm B can be defined, with the advantage η/2
over the DBDH problem. The algorithm B plays the role of challenger for A in the selective
game for KP-ABE Scheme.

The algorithm B is given an instance of the DBDH problem, that is: two groups G1 and
G2 of prime order p, a generator g of G1, a bilinear map e : G1 ×G1 → G2, the values ga,
gb, gc, and Zv ← {Z0, Z1}, where Z0 = e(g, g)abc, Z1 = e(g, g)z, and a, b, c, z ← Zp.

Now, the algorithm B runs A acting as a challenger for it.
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Init Let A be a non-empty set of attributes the adversary A wishes to be challenged upon.

Setup B chooses at random ri ∈ Zp for all i ∈ U , and computes Y = e(ga, gb) = e(g, g)ab

and Ti = gti for all i ∈ U , where

ti =

{
ri, if i ∈ A
bri, otherwise

(B can compute Ti because it knows ri and gb). Then, B publishes the public parameters

PP = (p,G1, G2, g, e, n, Y, (Ti|i ∈ U)).

The choice of Ti in this way will be transparent in the next step.

Phase 1 The adversary is granted oracle access to the decryption key generation oracle for
all queries C with C(A) = 0. Given such a query, the decryption key is computed as follows.
The algorithm B uses first a procedure FakeShare which will share ga as the procedure
Share shares y = ab (remark that B does not know ab). Then, B delivers decryption keys
based on gb. The following requirements are to be fulfilled:

1. from the adversary’s point of view, the secret sharing and distribution of decryption
keys should look as in the original scheme;

2. the reconstruction procedureRecon, starting from the decryption keys and an authorized
set of attributes, should return e(g, g)abc.

In order to easily describe the procedure FakeShare we adopt the notation Cw(A) for
the truth value at the wire w when the circuit C is evaluated for A. The main idea in
FakeShare is the following:

1. if the output wire w of a logic gate Γ = (w1, w2, X,w) satisfies Cw(A) = 0, where X
stands for “OR” or “AND”, then the value to be shared at this wire is of the form gx,
for some x ∈ Zp; otherwise, the value to be shared at this wire is an element x ∈ Zp;

2. the shares obtained by sharing the value associated to w, and distributed to the input
wires of Γ , should satisfy the same constraints as above. For instance, if Cw1(A) = 0
and Cw2(A) = 1, then the share distributed to w1 should be of the form gx1 while the
share distributed to w2 should be of the form x2;

3. the same policy applies to FANOUT-gates as well.

The procedure FakeShare is as follows:

FakeShare(ga, C)

1. Initially, all gates of C are unmarked;
2. S(o) := (ga);
3. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) = L, then mark Γ and do

the followings:

(a) if Cw(A) = Cw1(A) = Cw2(A), then S(w1) := L and S(w2) := L;
(b) if Cw(A) = 1 = Cw1(A) and Cw2(A) = 0, then S(w1) := L and S(w2) := (gL(i)|1 ≤

i ≤ |L|);
(c) if Cw(A) = 1 = Cw2(A) and Cw1(A) = 0, then S(w2) := L and S(w1) := (gL(i)|1 ≤

i ≤ |L|).
Remark that, in the last two cases (b) and (c), all the elements in L are from Zp;
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4. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) = L, then mark Γ and
do the followings:

(a) if Cw(A) = 1, then:

i. for each i ∈ pos(L) choose x1i uniformly at random from Zp and compute x2i =
(L(i) − x1i ) mod p. Define L1 (L2, resp.) as being the list obtained from L by
replacing L(i) by x1i (x2i , resp.), for all i ∈ pos(L);

ii. assign S(w1) := L1 and S(w2) := L2;

(b) if Cw(A) = 0 = Cw2(A) and Cw1(A) = 1 then:

i. for each i ∈ pos(L) choose x1i uniformly at random from Zp and compute gx
2
i =

L(i)/gx
1
i . Define L1 (L2, resp.) as being the list obtained from L by replacing

L(i) by x1i (gx
2
i , resp.), for all i ∈ pos(L);

ii. assign S(w1) := L1 and S(w2) := L2;

(c) if Cw(A) = 0 = Cw1(A) and Cw2(A) = 1 then do as above by switching w1 and w2;

(d) if Cw(A) = Cw1(A) = Cw2(A) = 0 then:

i. for each i ∈ pos(L) choose x1i uniformly at random from Zp and compute gx
2
i =

L(i)/gx
1
i . Define L1 (L2, resp.) as being the list obtained from L by replacing

L(i) by gx
1
i (gx

2
i , resp.), for all i ∈ pos(L);

ii. assign S(w1) := L1 and S(w2) := L2;

5. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wk) = Lk for
all 1 ≤ k ≤ j, then mark Γ and do the followings:

(a) if Cw(A) = Cw1(A) = · · · = Cwj (A) = 1 then

i. for each i ∈ pos(L1) choose uniformly at random ai ∈ Zp and compute bi such
that L1(i) = (ai + bi) mod p;

ii. compute L′1 = (ai|1 ≤ i ≤ |L1|) and P (w1) := (gbi |1 ≤ i ≤ |L1|);
iii. compute L′k and P (wk) in a similar way to L′1 and P (w1), for all 2 ≤ k ≤ j;
iv. Assign S(w) := L′1 · · ·L′j ;

(b) if Cw(A) = Cw1(A) = · · · = Cwj (A) = 0 then

i. for each i ∈ pos(L1) choose uniformly at random ai ∈ Zp and compute gbi =
L1(i)/g

ai ;
ii. compute L′1 = (gai |1 ≤ i ≤ |L1|) and P (w1) := (gbi |1 ≤ i ≤ |L1|);
iii. compute L′k and P (wk) in a similar way to L′1 and P (w1), for all 2 ≤ k ≤ j;
iv. Assign S(w) := L′1 · · ·L′2;

6. repeat the last three steps above until all gates get marked.

Let (S, P ) ← FakeShare(ga, C). The algorithm B will deliver to A the decryption key
D = ((D(i)|i ∈ U), P ′), where

D(i) =

{(
(gb)S(i,j)/ri |1 ≤ j ≤ |S(i)|

)
, if i ∈ A(

S(i, j)1/ri |1 ≤ j ≤ |S(i)|
)
, if i 6∈ A

for any i ∈ U . Remark that the key component D(i) for i ∈ A is of the form(
gbS(i,j)/ri |1 ≤ j ≤ |S(i)|

)
while for i 6∈ A it is of the form(

gyi,j/ri |1 ≤ j ≤ |S(i)|
)

=
(
gbyi,j/bri |1 ≤ j ≤ |S(i)|

)
(for some yi,j ∈ Zp) because the shares of i are all powers of g.
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The distribution of this decryption key is identical to that in the original scheme.
Moreover, it is easy to see that the reconstruction procedure Recon, applied to VA(i, j) =
e(g, g)S(i,j)bc for all i ∈ A and 1 ≤ j ≤ |S(i)|, returns e(g, g)abc.

Challenge The adversary A selects two messages m0 and m1 (of the same length) and sends
them to B. The algorithm B encrypts mu with Zv, where u← {0, 1}, and sends it back to
the adversary (recall that Zv was randomly chosen from {Z0, Z1}). The ciphertext is

E = (A,E′ = muZv, {Ei = T ci = gcri}i∈A)

If v = 0, E is a valid encryption of mu; if v = 1, E′ is a random element from G2.

Phase 2 The adversary may receive again oracle access to the decryption key generation
oracle (with the same constraint as in Phase 1).

Guess Let u′ be A’s guess. If u′ = u, then B outputs v′ = 0; otherwise, it outputs v′ = 1.

We compute now the advantage of B. Clearly,

P (v′ = v)− 1

2
= P (v′ = v|v = 0) · P (v = 0) + P (v′ = v|v = 1) · P (v = 1)− 1

2

Both P (v = 0) and P (v = 1) are 1/2. Then, remark that

P (v′ = v|v = 0) = P (u′ = u|v = 0) =
1

2
+ η

and P (v′ = v|v = 1) = P (u′ 6= u|v = 1) = 1
2 . Putting all together we obtain that the

advantage of B is P (v′ = v)− 1
2 = 1

2η. ut

10 Appendix

We will show here, by means of an example, that disjunctive multilevel access structures
cannot be represented by Boolean formulas (Boolean circuits without FANOUT-gates).

Let U = {1, 2, 3, 4}, U1 = {1, 2}, U2 = {3, 4}, a1 = 2, and a2 = 3. The minimal authorized
sets are {1, 2}, {1, 3, 4}, and {2, 3, 4}. If this disjunctive multilevel access structure would
be representable by a Boolean formula, then the following would hold:

1. 1 and 2 cannot be connected by an OR-gate because then {1} would be authorized;
2. 1 and 2 cannot be connected by an AND-gate because {1, 3, 4} is authorized and {3, 4}

would become authorized too, which is a contradiction;
3. 1 and 3 cannot be connected by an OR-gate because {1, 2, 3} is authorized and {2, 3}

would become authorized too, which is a contradiction. Similarly, 1 and 4 cannot be
connected by an OR-gate;

4. 1 and 3 cannot be connected by an AND-gate because {1, 2} is authorized and {2, 3}
would become authorized too, which is a contradiction. Similarly, 1 and 4 cannot be
connected by an AND-gate;

5. 2 and 3 (2 and 4) cannot be connected by OR- or AND-gates by similar reasons as
above;

6. 3 and 4 cannot be connected by an OR-gate because {1, 3, 4} is authorized and {1, 3}
would become authorized too, which is a contradiction;

7. according to the above items, 3 and 4 can be connected only by an AND-gate Γ . But
then, it is easy to see that there is no way to connect 1, 2, and Γ to obtain this access
structure (the discussion is similar to the one above).

Similarly, conjunctive multilevel access structures cannot be represented by Boolean
formulas.
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