69 research outputs found

    Influence of surface roughness on superhydrophobicity

    Get PDF
    Superhydrophobic surfaces, with liquid contact angle theta greater than 150 degree, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D_f of the surface.Comment: 5 Pages, 6 figures. Minimal changes with respect to the previous versio

    Why Are Alkali Halide Solid Surfaces Not Wetted By Their Own Melt?

    Full text link
    Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface. The latter is pursued in detail, and it is shown that surface short-range charge order acts to raise the surface tension because incipient NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl much below that of solid NaCl(100).Comment: 4 pages, 3 figure

    Ectoplasm & Superspace Integration Measure for 2D Supergravity with Four Spinorial Supercurrents

    Full text link
    Building on a previous derivation of the local chiral projector for a two dimensional superspace with eight real supercharges, we provide the complete density projection formula required for locally supersymmetrical theories in this context. The derivation of this result is shown to be very efficient using techniques based on the Ectoplasmic construction of local measures in superspace.Comment: 18 pages, LaTeX; V2: minor changes, typos corrected, references added; V3: version to appear in J. Phys. A: Math. Theor., some comments and references added to address a referee reques

    Feedback Loops Between Fields and Underlying Space Curvature: an Augmented Lagrangian Approach

    Get PDF
    We demonstrate a systematic implementation of coupling between a scalar field and the geometry of the space (curve, surface, etc.) which carries the field. This naturally gives rise to a feedback mechanism between the field and the geometry. We develop a systematic model for the feedback in a general form, inspired by a specific implementation in the context of molecular dynamics (the so-called Rahman-Parrinello molecular dynamics, or RP-MD). We use a generalized Lagrangian that allows for the coupling of the space's metric tensor (the first fundamental form) to the scalar field, and add terms motivated by RP-MD. We present two implementations of the scheme: one in which the metric is only time-dependent [which gives rise to ordinary differential equation (ODE) for its temporal evolution], and one with spatio-temporal dependence [wherein the metric's evolution is governed by a partial differential equation (PDE)]. Numerical results are reported for the (1+1)-dimensional model with a nonlinearity of the sine-Gordon type.Comment: 5 pages, 3 figures, Phys. Rev. E in pres

    Six-dimensional Supergravity and Projective Superfields

    Full text link
    We propose a superspace formulation of N=(1,0) conformal supergravity in six dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The known variant Weyl super-multiplet is recovered by coupling the geometry to a super-3-form tensor multiplet. Isotwistor variables are introduced and used to define projective superfields. We formulate a locally supersymmetric and super-Weyl invariant action principle in projective superspace. Some families of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3), (2.14b), (2.16) and (2.17) correcte

    Three-dimensional (p,q) AdS superspaces and matter couplings

    Full text link
    We introduce N-extended (p,q) AdS superspaces in three space-time dimensions, with p+q=N and p>=q, and analyse their geometry. We show that all (p,q) AdS superspaces with X^{IJKL}=0 are conformally flat. Nonlinear sigma-models with (p,q) AdS supersymmetry exist for p+q4 the target space geometries are highly restricted). Here we concentrate on studying off-shell N=3 supersymmetric sigma-models in AdS_3. For each of the cases (3,0) and (2,1), we give three different realisations of the supersymmetric action. We show that (3,0) AdS supersymmetry requires the sigma-model to be superconformal, and hence the corresponding target space is a hyperkahler cone. In the case of (2,1) AdS supersymmetry, the sigma-model target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations of the two-sphere of complex structures.Comment: 52 pages; V3: minor corrections, version published in JHE

    Ballistic nanofriction

    Full text link
    Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS) and nanomotors, increasingly involve large speeds, and rotations as well as translations of the moving surfaces; yet, the physics of high speed nanoscale friction is so far unexplored. Here, by simulating the motion of drifting and of kicked Au clusters on graphite - a workhorse system of experimental relevance -- we demonstrate and characterize a novel "ballistic" friction regime at high speed, separate from drift at low speed. The temperature dependence of the cluster slip distance and time, measuring friction, is opposite in these two regimes, consistent with theory. Crucial to both regimes is the interplay of rotations and translations, shown to be correlated in slow drift but anticorrelated in fast sliding. Despite these differences, we find the velocity dependence of ballistic friction to be, like drift, viscous

    On 2D N=(4,4) superspace supergravity

    Full text link
    We review some recent results obtained in studying superspace formulations of 2D N=(4,4) matter-coupled supergravity. For a superspace geometry described by the minimal supergravity multiplet, we first describe how to reduce to components the chiral integral by using ``ectoplasm'' superform techniques as in arXiv:0907.5264 and then we review the bi-projective superspace formalism introduced in arXiv:0911.2546. After that, we elaborate on the curved bi-projective formalism providing a new result: the solution of the covariant type-I twisted multiplet constraints in terms of a weight-(-1,-1) bi-projective superfield.Comment: 18 pages, LaTeX, Contribution to the proceedings of the International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, July 29-August 3 200

    On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    Full text link
    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the Atomic Force Microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input.Comment: Topical review; 82 pages, 61 figures; Format: Latex (iopart). Some figures are in Postscript Level
    • …
    corecore