9 research outputs found

    Translaminar dynamic fracture toughness of a hybrid fiber-metal laminate devised to high-temperature applications

    Get PDF
    A tenacidade à fratura translaminar dinâmica do laminado híbrido metal-fibra titânio-grafite com matriz termoplástica foi determinada sob as velocidades de impacto de 2,25 e 5,52 m/s, no intervalo de temperaturas de -196 a +180 °C, e comparada à de laminados compósitos convencionais de fibras de carbono e resina epóxi. Constatou-se que o laminado híbrido exibe uma tenacidade à iniciação da fratura inferior à dos compósitos tradicionais com fibras na forma de fita unidirecional, porém superior à dos laminados convencionais com fibras na forma de tecido bidirecional. Os ensaios de impacto revelaram que, comparativamente ao desempenho mecânico dos laminados carbono-epóxi, o emprego do laminado híbrido metal-fibra se justifica mais pela sua resistência à propagação do que à iniciação da fratura dinâmica.The translaminar dynamic fracture toughness of titanium-graphite hybrid fiber-metal laminate with thermoplastic matrix has been determined at the impact velocities of 2.25 and 5.52 m/s, within the temperature range from -196 to +180 ºC, and compared to that of conventional carbon-epoxy composite laminates. The hybrid laminate exhibits lower initiation fracture toughness than traditional unidirectional tape composites though it is tougher than conventional woven fabric laminates. Impact tests revealed that, if compared to the mechanical performance of conventional carbon-epoxy laminates, the fiber-metal laminate application must rely on its resistance to dynamic fracture propagation rather than on fracture initiation.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Thermographic inspection of impact damage in carbon fiber-reinforcing polymer matrix laminates

    Get PDF
    Laminados compósitos com matrizes poliméricas, respectivamente termorrígida e termoplástica, fortalecidas com fibras contínuas de carbono foram submetidos a impacto único transversal com diferentes níveis de energia. Os danos impingidos aos materiais estruturais foram avaliados por termografia ativa infravermelha na modalidade transmissão. Em geral, os termogramas do laminado termoplástico apresentaram indicações mais claras e bem definidas dos danos causados por impacto, se comparados aos do compósito termorrígido. O aquecimento convectivo das amostras por fluxo controlado de ar quente se mostrou mais eficaz que o realizado por irradiação, empregando-se lâmpada de filamento. Observou-se também que tempos mais longos de aquecimento favoreceram a visualização dos danos. O posicionamento da face impactada do espécime, relativamente à câmera infravermelha e à fonte de calor, não afetou a qualidade dos termogramas no caso do laminado termorrígido, enquanto que influenciou significativamente os termogramas do compósito termoplástico. Os resultados permitiram concluir que a termografia infravermelha é um método de ensaio não-destrutivo simples, robusto e confiável para a detecção de danos por impacto tão leve quanto 5 J em laminados compósitos poliméricos reforçados com fibras de carbono.Continuous carbon fiber reinforced thermoset and thermoplastic composite laminates were exposed to single transversal impact with different energy levels. The damages impinged to the structural materials were evaluated by active infrared thermography in the transmission mode. In general, the thermoplastic laminate thermograms showed clearer damage indications than those from the thermosetting composite. The convective heating of the samples by controlled hot air flow was more efficient than via irradiation using a filament lamp. It was also observed that longer heating times improved the damage visualization. The positioning of the specimen's impacted face regarding the infrared camera and the heating source did not affect the thermo-imaging of thermosetting specimens, whereas it substantially influenced the thermograms of thermoplastic laminates. The results obtained allow concluding that infrared thermography is a simple, robust and trustworthy methodology for detecting impact damages as slight as 5 J in carbon fiber composite laminates.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNPqMaterials Institute of Brazi

    Tenacidade à fratura translaminar dinâmica de laminados compósitos de fibras de carbono e resina epóxi de grau aeronáutico Translaminar dynamic fracture toughness of aeronautic grade composite laminates made with carbon fiber-epoxy resin

    No full text
    A tenacidade à fratura translaminar dinâmica de quatro laminados compósitos de fibras de carbono e resina epóxi foi determinada nas velocidades de impacto de 2,25 e 5,52 m/s, sob as temperaturas de -70, +25 e +100 °C. Concluiu-se que a tenacidade à iniciação da fratura dos laminados confeccionados com fibras na forma de fita unidirecional é, em qualquer condição de ensaio, muito superior à dos laminados manufaturados com fibras dispostas na forma de tecido bi-direcional. Quanto à tenacidade à propagação de danos, constatou-se que o laminado fita processado a 180 °C é o mais indicado para operar sob impacto em temperaturas intermediárias, enquanto que o manufaturado a 120 °C é a melhor opção para trabalhar sob ambos os extremos do intervalo de temperatura avaliado.<br>The translaminar dynamic fracture toughness of four carbon fiber - epoxy resin composite laminates was compared at the impact velocities of 2.25 and 5.52 m/s, under the temperatures of -70, +25 and +100 °C. It has been concluded that the initiation fracture toughness of unidirectional tape laminates is quite higher than bidirectional woven fabric composites, despite the testing conditions. In regard to the damage propagation toughness, it has been shown that the tape laminate processed at 180 °C is the best option at intermediate temperatures, whereas the tape composite manufactured at 120 °C is the most suitable to operate under impact at both the extremes of the temperature range evaluated

    Detection and Imaging of Damages and Defects in Fibre-Reinforced Composites by Magnetic Resonance Technique

    No full text
    Defectively manufactured and deliberately damaged composite laminates fabricated with different continuous reinforcing fibres (respectively, carbon and glass) and polymer matrices (respectively, thermoset and thermoplastic) were inspected in magnetic resonance imaging equipment. Two pulse sequences were evaluated during non-destructive examination conducted in saline solution-immersed samples to simulate load-bearing orthopaedic implants permanently in contact with biofluids. The orientation, positioning, shape, and especially the size of translaminar and delamination fractures were determined according to stringent structural assessment criteria. The spatial distribution, shape, and contours of water-filled voids were sufficiently delineated to infer the amount of absorbed water if thinner image slices than this study were used. The surface texture of composite specimens featuring roughness, waviness, indentation, crushing, and scratches was outlined, with fortuitous artefacts not impairing the image quality and interpretation. Low electromagnetic shielding glass fibres delivered the highest, while electrically conductive carbon fibres produced the poorest quality images, particularly when blended with thermoplastic polymer, though reliable image interpretation was still attainable

    Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part I - Annealing

    No full text
    A nuclear reactor pressure vessel steel was submitted to different annealing heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested with subsequent metallographic and fractographic characterization. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical behavior of the microstructures in both quasi-static (J-R curve) and dynamic (Charpy impact) loading regimes. A well defined relationship was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy for very most of the microstructures

    Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part II - Quenching and Tempering

    No full text
    A nuclear reactor pressure vessel steel was submitted to different quenching and tempering heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested and submitted to metallographic and fractographic survey. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical performance of the thermally embrittled microstructures. A well defined correlation was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy, which was achieved for some of the Q&T microstructures

    Microstructural and Fractographic Characterization of a Thermally Embrittled Nuclear Grade Steel: Part II - Quenching and Tempering

    No full text
    A nuclear reactor pressure vessel steel was submitted to different quenching and tempering heat treatments aimed at simulating neutron irradiation damage. The obtained microstructures were mechanically tested and submitted to metallographic and fractographic survey. The relevant microstructural and fractographic aspects were employed in the interpretation of the mechanical performance of the thermally embrittled microstructures. A well defined correlation was determined between the elastic-plastic fracture toughness parameter J-integral and the Charpy impact energy, which was achieved for some of the Q&T microstructures
    corecore