2,050 research outputs found

    A simple derivation of the formula to calculated synthetic long-period seismograms in a heterogeneous Earth by normal mode summation

    Get PDF
    A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the Earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the Earth

    Harmonic Analysis of Linear Fields on the Nilgeometric Cosmological Model

    Full text link
    To analyze linear field equations on a locally homogeneous spacetime by means of separation of variables, it is necessary to set up appropriate harmonics according to its symmetry group. In this paper, the harmonics are presented for a spatially compactified Bianchi II cosmological model -- the nilgeometric model. Based on the group structure of the Bianchi II group (also known as the Heisenberg group) and the compactified spatial topology, the irreducible differential regular representations and the multiplicity of each irreducible representation, as well as the explicit form of the harmonics are all completely determined. They are also extended to vector harmonics. It is demonstrated that the Klein-Gordon and Maxwell equations actually reduce to systems of ODEs, with an asymptotic solution for a special case.Comment: 28 pages, no figures, revised version to appear in JM

    Waveform inversion of mantle Love waves: The born seismogram approach

    Get PDF
    Normal mode theory, extended to the slightly laterally heterogeneous Earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the Earth's lateral heterogeneity at l=2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l=2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5% in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only

    5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal

    Full text link
    We study two-dimensional rotation-symmetric number-conserving cellular automata working on the von Neumann neighborhood (RNCA). It is known that such automata with 4 states or less are trivial, so we investigate the possible rules with 5 states. We give a full characterization of these automata and show that they cannot be strongly Turing universal. However, we give example of constructions that allow to embed some boolean circuit elements in a 5-states RNCA

    Scalar fields on SL(2,R) and H^2 x R geometric spacetimes and linear perturbations

    Full text link
    Using appropriate harmonics, we study the future asymptotic behavior of massless scalar fields on a class of cosmological vacuum spacetimes. The spatial manifold is assumed to be a circle bundle over a higher genus surface with a locally homogeneous metric. Such a manifold corresponds to the SL(2,R)-geometry (Bianchi VIII type) or the H^2 x R-geometry (Bianchi III type). After a technical preparation including an introduction of suitable harmonics for the circle-fibered Bianchi VIII to separate variables, we derive systems of ordinary differential equations for the scalar field. We present future asymptotic solutions for these equations in a special case, and find that there is a close similarity with those on the circle-fibered Bianchi III spacetime. We discuss implications of this similarity, especially to (gravitational) linear perturbations. We also point out that this similarity can be explained by the "fiber term dominated behavior" of the two models.Comment: 23 pages, no figures, to be published in Class. Quant. Gravi

    Leptogenesis and Low energy CP violation, a link

    Get PDF
    How is CP violation of low energy related to CP violation required from baryon number asymmetry ? We give an example which shows a direct link between CP violation of neutrino oscillation and baryogenesis through leptogenesis.Comment: 3 pages and 2 figures, Talk presented at 4th Nufac02, July 1-6, 200

    Are lepton flavor mixings in the democratic mass matrix stable against quantum corrections?

    Get PDF
    We investigate whether the lepton flavor mixing angles in the so-called democratic type of mass matrix are stable against quantum corrections or not in the minimal supersymmetric standard model with dimension five operator which induces neutrino mass matrix. By taking simple breaking patterns of S3L×S3RS_3{}_L \times S_3{}_R or O(3)L×O(3)RO(3)_L \times O(3)_R flavor symmetries and the scale where democratic textures are induced as O(1013)O(10^{13}) GeV, we find that the stability of the lepton flavor mixing angles in the democratic type of mass matrix against quantum corrections depends on the solar neutrino solutions. The maximal flavor mixing of the vacuum oscillation solution is spoiled by the quantum corrections in the experimental allowed region of tanβ\tan \beta. The large angle MSW solution is spoiled by the quantum corrections in the region of tanβ>10\tan \beta > 10. The condition of tanβ10\tan \beta \leq 10 is needed in order to obtain the suitable mass squared difference of the small angle MSW solution. These strong constraints must be regarded for the model building of the democratic type of mass matrixComment: 12pages,LaTe
    corecore