116 research outputs found
Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors
BACKGROUND: Alpha-Synuclein (alpha-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the alpha-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of alpha-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. RESULTS: In the present study, we analysed the ability of cytosolic factors to regulate alpha-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant alpha-syn. To characterize cytosolic factor(s) that modulate alpha-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate alpha-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T alpha-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance alpha-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P alpha-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. CONCLUSION: These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant alpha-syn membrane binding, and could represent potential targets to influence alpha-syn solubility in brain
Parental education and perception of outdoor playing time for preschoolers
Abstract Aim: The objective of this study was to analyze whether or not socioeconomic positions influence outdoor playtime during the week (WK) and on the weekends (WEND). Methods: The sample consisted of 485 (girls; n=223) healthy preschoolers, aged from 3 to 6 years, enrolled in kindergartens from the metropolitan area of Porto, Portugal. Physical Activity (PA) was assessed for 7 consecutive days with an accelerometer. The time playing outdoors during the WK or the WEND was reported by parents. Anthropometric data (weight and height) was collected following standardized protocols. Socioeconomic position was assessed by Parental Education (PE), according to the Portuguese education system. Results: We found differences in time spent playing outdoors either for the WK or WEND, but not for Total PA (TPA), in both sexes. However, regression analysis showed that after age adjustment, BMI and TPA for both sexes, we only found significant associations between low PE (LPE) and high PE (HPE) groups on WK or WEND. However, we found no statistically significant association for boys on the WK (p=0.06). Conclusion: Our findings suggest that socioeconomic position can influence the children’s time spent in outdoor activities, especially on the weekends. This may have implications for future interventions with this age group
Individual participant data meta-analysis to compare EPDS accuracy to detect major depression with and without the self-harm item
Item 10 of the Edinburgh Postnatal Depression Scale (EPDS) is intended to assess thoughts of intentional self-harm but may also elicit concerns about accidental self-harm. It does not specifically address suicide ideation but, nonetheless, is sometimes used as an indicator of suicidality. The 9-item version of the EPDS (EPDS-9), which omits item 10, is sometimes used in research due to concern about positive endorsements of item 10 and necessary follow-up. We assessed the equivalence of total score correlations and screening accuracy to detect major depression using the EPDS-9 versus full EPDS among pregnant and postpartum women. We searched Medline, Medline In-Process and Other Non-Indexed Citations, PsycINFO, and Web of Science from database inception to October 3, 2018 for studies that administered the EPDS and conducted diagnostic classification for major depression based on a validated semi-structured or fully structured interview among women aged 18 or older during pregnancy or within 12 months of giving birth. We conducted an individual participant data meta-analysis. We calculated Pearson correlations with 95% prediction interval (PI) between EPDS-9 and full EPDS total scores using a random effects model. Bivariate random-effects models were fitted to assess screening accuracy. Equivalence tests were done by comparing the confidence intervals (CIs) around the pooled sensitivity and specificity differences to the equivalence margin of δ = 0.05. Individual participant data were obtained from 41 eligible studies (10,906 participants, 1407 major depression cases). The correlation between EPDS-9 and full EPDS scores was 0.998 (95% PI 0.991, 0.999). For sensitivity, the EPDS-9 and full EPDS were equivalent for cut-offs 7–12 (difference range − 0.02, 0.01) and the equivalence was indeterminate for cut-offs 13–15 (all differences − 0.04). For specificity, the EPDS-9 and full EPDS were equivalent for all cut-offs (difference range 0.00, 0.01). The EPDS-9 performs similarly to the full EPDS and can be used when there are concerns about the implications of administering EPDS item 10. Trial registration: The original IPDMA was registered in PROSPERO (CRD42015024785)
The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway
Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures
Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2
BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands
- …