14,992 research outputs found

    Effect of zero energy bound states on macroscopic quantum tunneling in high-Tc superconductor junctions

    Full text link
    The macroscopic quantum tunneling (MQT) in the current biased high-Tc superconductor Josephson junctions and the effect of the zero energy bound states (ZES) on the MQT are theoretically investigated. We obtained the analytical formula of the MQT rate and showed that the presence of the ZES at the normal/superconductor interface leads to a strong Ohmic quasiparticle dissipation. Therefore, the MQT rate is noticeably inhibited in compared with the c-axis junctions in which the ZES are completely absent.Comment: 4 pages, 1 figure, comment and reference about recent experiment adde

    Coherent quasi-particles-to-incoherent hole-carriers crossover in underdoped cuprates

    Full text link
    In underdoped cuprates, only a portion of the Fermi surface survives as Fermi arcs due to pseudogap opening. In hole-doped La2_{2}CuO4_4, we have deduced the "coherence temperature" TcohT_{coh} of quasi-particles on the Fermi arc above which the broadened leading edge position in angle-integrated photoemission spectra is shifted away from the Fermi level and the quasi-particle concept starts to lose its meaning. TcohT_{coh} is found to rapidly increase with hole doping, an opposite behavior to the pseudogap temperature TT^*. The superconducting dome is thus located below both TT^* and TcohT_{coh}, indicating that the superconductivity emerges out of the coherent Fermionic quasi-particles on the Fermi arc. TcohT_{coh} remains small in the underdoped region, indicating that incoherent charge carriers originating from the Fermi arc are responsible for the apparently metallic transport at high temperatures

    Non-Hermitian quantum mechanics: the case of bound state scattering theory

    Full text link
    Excited bound states are often understood within scattering based theories as resulting from the collision of a particle on a target via a short-range potential. We show that the resulting formalism is non-Hermitian and describe the Hilbert spaces and metric operator relevant to a correct formulation of such theories. The structure and tools employed are the same that have been introduced in current works dealing with PT-symmetric and quasi-Hermitian problems. The relevance of the non-Hermitian formulation to practical computations is assessed by introducing a non-Hermiticity index. We give a numerical example involving scattering by a short-range potential in a Coulomb field for which it is seen that even for a small but non-negligible non-Hermiticity index the non-Hermitian character of the problem must be taken into account. The computation of physical quantities in the relevant Hilbert spaces is also discussed

    Magnetic coupling in highly-ordered NiO/Fe3O4(110): Ultrasharp magnetic interfaces vs. long-range magnetoelastic interactions

    Full text link
    We present a laterally resolved X-ray magnetic dichroism study of the magnetic proximity effect in a highly ordered oxide system, i.e. NiO films on Fe3O4(110). We found that the magnetic interface shows an ultrasharp electronic, magnetic and structural transition from the ferrimagnet to the antiferromagnet. The monolayer which forms the interface reconstructs to NiFe2O4 and exhibits an enhanced Fe and Ni orbital moment, possibly caused by bonding anisotropy or electronic interaction between Fe and Ni cations. The absence of spin-flop coupling for this crystallographic orientation can be explained by a structurally uncompensated interface and additional magnetoelastic effects

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte

    Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor

    Full text link
    The tunneling characteristics of planar junctions between a normal metal and a non-centrosymmetric superconductor like CePt3Si are examined. It is shown that the superconducting phase with mixed parity can give rise to characteristic zero-bias anomalies in certain junction directions. The origin of these zero-bias anomalies are Andreev bound states at the interface. The tunneling characteristics for different directions allow to test the structure of the parity-mixed pairing state.Comment: 4 pages, 3 figure

    Multiphoton transitions in a macroscopic quantum two-state system

    Full text link
    We have observed multiphoton transitions between two macroscopic quantum-mechanical superposition states formed by two opposite circulating currents in a superconducting loop with three Josephson junctions. Resonant peaks and dips of up to three-photon transitions were observed in spectroscopic measurements when the system was irradiated with a strong RF-photon field. The widths of the multiphoton absorption dips are shown to scale with the Bessel functions in agreement with theoretical predictions derived from the Bloch equation or from a spin-boson model.Comment: 4 pages, 3 figure

    Oblique triangular antiferromagnetic phase in CsCu1x_{1-x}Cox_xCl3_3

    Full text link
    The spin-1/2 stacked triangular antiferromagnet CsCu1x_{1-x}Cox_xCl3_3 with 0.015<x<0.0320.015<x<0.032 undergoes two phase transitions at zero field. The low-temperature phase is produced by the small amount of Co2+^{2+} doping. In order to investigate the magnetic structures of the two ordered phases, the neutron elastic scattering experiments have been carried out for the sample with x0.03x\approx 0.03. It is found that the intermediate phase is identical to the ordered phase of CsCuCl3_3, and that the low-temperature phase is an oblique triangular antiferromagnetic phase in which the spins form a triangular structure in a plane tilted from the basal plane. The tilting angle which is 42^{\circ} at T=1.6T=1.6 K decreases with increasing temperature, and becomes zero at TN2=7.2T_{\rm N2} =7.2 K. An off-diagonal exchange term is proposed as the origin of the oblique phase.Comment: 6 pages, 7 figure

    Hamiltonian Determination with Restricted Access in Transverse Field Ising Chain

    Full text link
    We propose a method to evaluate parameters in the Hamiltonian of the Ising chain under site-dependent transverse fields, with a proviso that we can control and measure one of the edge spins only. We evaluate the eigenvalues of the Hamiltonian and the time-evoultion operator exactly for a 3-spin chain, from which we obtain the expectation values of σx\sigma_x of the first spin. The parameters are found from the peak positions of the Fourier transform of the expectation value. There are four assumptions in our method, which are mild enough to be satisfied in many physical systems.Comment: 15pages, 4 figure
    corecore