1,145 research outputs found

    Bright solitons in asymmetrically trapped Bose-Einstein condensate

    Full text link
    We study the dynamics of bright solitons in a Bose-Einstein condensate (BEC) confined in a highly asymmetric trap. While working within the f ramework of a variational approach we carry out the stability analysis o f BEC solitons against collapse. When the number of atoms in the soliton exceeds a critical number NcN_c, it undergoes the so called primary col lapse. We find an analytical expression for NcN_c in terms of appropriat e experimental quantities that are used to produce and confine the conde nsate. We further demonstrate that, in the geometry of the problem consi dered, the width of the soliton varies inversely as the number of consti tuent atoms.Comment: 5 pages, 1 figure

    Experimental Realization of Quantum-Resonance Ratchets

    Full text link
    Quantum-resonance ratchets associated with the periodically kicked particle are experimentally realized for the first time. This is achieved by using a Bose-Einstein condensate exposed to a pulsed standing light wave and prepared in an initial state differing from the usual plane wave. Both the standing-wave potential and the initial state have a point symmetry around some center and the ratchet arises from the non-coincidence of the two centers. The dependence of the directed quantum transport on the quasimomentum is studied. A detailed theoretical analysis is used to explain the experimental results.Comment: Accepted for publication in Physical Review Letters (November 2007

    Implications of surface noise for the motional coherence of trapped ions

    Full text link
    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a new constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50~μ\mum above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both, the observed heating as well as the measured dephasing, satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.Comment: (5 pages, 4 figures

    Studies on Structural Defects on 60Co Irradiated Multi Walled Carbon Nanotubes.

    Get PDF
    AbstractAn attempt is made to study the effects of gamma irradiation on multi walled carbon nanotubes (MWCNTs) with a specific focus on surface modification, structural changes and identification of irradiation generated defects on their surface. The as-received MWCNTs were chemically treated in order to attach required functional group on the surface and to remove traces of metallic impurities. The MWCNTs were then gamma irradiated at 25, 50, 75 and 100 kGy doses. Micro Raman analysis was performed on irradiated MWCNTs to estimate the irradiation induced defects on their surface, which revealed that the number of defects increased with dose. XRD analysis was also performed to observe the same and it was revealed that the MWCNTs were subjected to micro-straining. The selective area electron diffraction pattern revealed that traces of amorphous carbon were formed after irradiation. Various defects such as bending, variation of internal and external diameter, wall damages formed on the MWCNTs was verified using TEM. It is concluded that subjecting MWCNTs to irradiation sources has produced structural changes and defects on their surface which can influence the properties of nanocomposites

    On the Dynamical Origin of H and Ps Binding

    Get PDF
    corecore