17,503 research outputs found

    Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method

    Get PDF
    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed

    A Novel Jet Model: Magnetically Collimated, Radiation-Pressure Driven Jet

    Full text link
    Relativistic jets from compact objects are ubiquitous phenomena in the Unvierse, but their driving mechanism has been an enigmatic issue over many decades. Two basic models have been extensively discussed: magnetohydrodynamic (MHD) jets and radiation-hydrodynamic (RHD) jets. Currently, the former is more widely accepted, since magnetic field is expected to provide both the acceleration and collimation mechanisms, whereas radiation field cannot collimate outflow. Here, we propose a new type of jets, radiation-magnetohydrodynamic (RMHD) jets, based on our global RMHD simulation of luminous accretion flow onto a black hole shining above the Eddington luminosity. The RMHD jet can be accelerated up to the relativistic speed by the radiation-pressure force and is collimated by the Lorentz force of a magnetic tower, inflated magnetic structure made by toroidal magnetic field lines accumulated around the black hole, though radiation energy greatly dominates over magnetic energy. This magnetic tower is collimated by a geometrically thick accretion flow supported by radiation-pressure force. This type of jet may explain relativistic jets from Galactic microquasars, appearing at high luminosities.Comment: 5 pages, 2 figures, accepted for publication in PAS

    Precision Tests of Electroweak Physics

    Get PDF
    We review the current status of precision electroweak measurements and the constraints they impose on new physics. We perform a model independent analysis using the STU-formalism of Ref. 1, and then discuss how the Z-pole data from LEP and SLD can be used to constrain models that are not covered within that framework.Comment: 1 cover page + 8 pages, 8 postscript figures, LaTeX2e, ws-p9-75x6-50.cls, Talk presented at Hadron 13, Mumbai, India, January 14-20, 199
    corecore