Relativistic jets from compact objects are ubiquitous phenomena in the
Unvierse, but their driving mechanism has been an enigmatic issue over many
decades. Two basic models have been extensively discussed: magnetohydrodynamic
(MHD) jets and radiation-hydrodynamic (RHD) jets. Currently, the former is more
widely accepted, since magnetic field is expected to provide both the
acceleration and collimation mechanisms, whereas radiation field cannot
collimate outflow. Here, we propose a new type of jets,
radiation-magnetohydrodynamic (RMHD) jets, based on our global RMHD simulation
of luminous accretion flow onto a black hole shining above the Eddington
luminosity. The RMHD jet can be accelerated up to the relativistic speed by the
radiation-pressure force and is collimated by the Lorentz force of a magnetic
tower, inflated magnetic structure made by toroidal magnetic field lines
accumulated around the black hole, though radiation energy greatly dominates
over magnetic energy. This magnetic tower is collimated by a geometrically
thick accretion flow supported by radiation-pressure force. This type of jet
may explain relativistic jets from Galactic microquasars, appearing at high
luminosities.Comment: 5 pages, 2 figures, accepted for publication in PAS