17,917 research outputs found
Anomalous low temperature state of CeOs4Sb12: Magnetic field and La-impurity study
Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field
and magnetic fields to 14 T is reported. Our results confirm enhanced value of
the electronic specific heat coefficient in the paramagnetic state. They
provide arguments for the intrinsic origin of the 1.1 K anomaly. This
transition leads to opening of the gap at the Fermi surface. This low
temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities.
2% of La substituted for Ce suppresses the transition and reduces the
electronic specific heat coefficient. The magnetic field response of the
specific heat is also anomalous.Comment: 4 pages, 3 figure
Recommended from our members
Foot protein isoforms are expressed at different times during embryonic chick skeletal muscle development.
We have investigated the time course of expression of the alpha and beta triad junctional foot proteins in embryonic chick pectoral muscle. The level of [3H]ryanodine binding in muscle homogenates is low until day E20 of embryonic development, then increases dramatically at the time of hatching reaching adult levels by day N7 posthatch. The alpha and beta foot protein isoforms increase in abundance concomitantly with [3H]ryanodine binding. Using foot protein isoform-specific antibodies, the alpha foot protein is detected in a majority of fibers in day E10 muscle, while the beta isoform is first observed at low levels in a few fibers in day E15 muscle. A high molecular weight polypeptide, distinct from the alpha and beta proteins, is recognized by antifoot protein antibodies. This polypeptide is observed in day E8 muscle and declines in abundance with continued development. It appears to exist as a monomer and does not bind [3H]ryanodine. In contrast, the alpha isoform present in day E10 muscle and the beta isoform in day E20 muscle are oligomeric and bind [3H]ryanodine suggesting that they may exist as functional calcium channels in differentiating muscle. Comparison of the intracellular distributions of the alpha foot protein, f-actin, the heavy chain of myosin and titin in day E10 muscle indicates that the alpha foot protein is expressed during myofibril assembly and Z line formation. The differential expression of the foot protein isoforms in developing muscle, and their continued expression in mature muscle, is consistent with these proteins making different functional contributions. In addition, the expression of the alpha isoform during the time of organization of a differentiated muscle morphology suggests that foot proteins may participate in events involved in muscle differentiation
Magnetoresistance Effects in SrFeO(3-x): Dependence on Phase Composition and Relation to Magnetic and Charge Order
Single crystals of iron(IV) rich oxides SrFeO(3-x) with controlled oxygen
content have been studied by Moessbauer spectroscopy, magnetometry,
magnetotransport measurements, Raman spectroscopy, and infrared ellipsometry in
order to relate the large magnetoresistance (MR) effects in this system to
phase composition, magnetic and charge order. It is shown that three different
types of MR effects occur. In cubic SrFeO3 (x = 0) a large negative MR of 25%
at 9 T is associated with a hitherto unknown 60 K magnetic transition and a
subsequent drop in resistivity. The 60 K transition appears in addition to the
onset of helical ordering at ~130 K. In crystals with vacancy-ordered
tetragonal SrFeO(3-x) as majority phase (x ~0.15) a coincident
charge/antiferromagnetic ordering transition near 70 K gives rise to a negative
giant MR effect of 90% at 9 T. A positive MR effect is observed in tetragonal
and orthorhombic materials with increased oxygen deficiency (x = 0.19, 0.23)
which are insulating at low temperatures. Phase mixtures can result in a
complex superposition of these different MR phenomena. The MR effects in
SrFeO(3-x) differ from those in manganites as no ferromagnetic states are
involved
Recommended from our members
Differential Effects of the Hormonal and Copper Intrauterine Device on the Endometrial Transcriptome.
The contraceptive effectiveness of intrauterine devices (IUDs) has been attributed in part to a foreign body reaction in the endometrium. We performed this study to better understand mechanisms of action of contraceptives of by studying their effects on endometrial and cervical transcriptomes. We collected endometrial and cervical biopsies from women using the levonorgestrel-releasing intrauterine system (LNG-IUS, n = 11), copper intrauterine device (cu-IUD, n = 13) or levonorgestrel-containing combined oral contraceptives (COC, n = 12), and from women not using contraceptives (control group, n = 11). Transcriptional profiling was performed with Affymetrix arrays, Principal Component Analysis and the bioconductor package limma. In endometrial samples from cu-IUD users, there were no genes with statistically significant differential expression compared to controls. In LNG-IUS users, 2509 genes were differentially expressed and mapped predominantly onto immune and inflammatory pathways. The cervical samples showed no statistically significant differential gene expression compared to controls. Hormonal and copper IUDs have significantly different effects on the endometrial transcriptome, with the LNG-IUS transcriptome showing pronounced inflammation and immune activation compared to controls whereas the cu-IUD transcriptome was indistinguishable from luteal phase endometrium. These findings argue against a foreign body reaction as a common mechanism of action of IUDs
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?
Chemically peculiar stars define a class of stars that show unusual elemental
abundances due to stellar photospheric effects and not due to natal variations.
In this paper, we compare the elemental abundance patterns of the ultra
metal-poor stars with metallicities [Fe/H] to those of a subclass of
chemically peculiar stars. These include post-AGB stars, RV Tauri variable
stars, and the Lambda Bootis stars, which range in mass, age, binarity, and
evolutionary status, yet can have iron abundance determinations as low as
[Fe/H] . These chemical peculiarities are interpreted as due to the
separation of gas and dust beyond the stellar surface, followed by the
accretion of dust depleted-gas. Contrary to this, the elemental abundances in
the ultra metal-poor stars are thought to represent yields of the most
metal-poor supernova and, therefore, observationally constrain the earliest
stages of chemical evolution in the Universe. The abundance of the elements in
the photospheres of the ultra metal-poor stars appear to be related to the
condensation temperature of that element; if so, then their CNO abundances
suggest true metallicities of [X/H]~ -2 to -4, rather than their present
metallicities of [Fe/H] < -5.Comment: Accepted for ApJ. 17 pages, 10 figure
High Orbital Eccentricities of Extrasolar Planets Induced by the Kozai Mechanism
One of the most remarkable properties of extrasolar planets is their high
orbital eccentricities. Observations have shown that at least 20% of these
planets, including some with particularly high eccentricities, are orbiting a
component of a wide binary star system. The presence of a distant binary
companion can cause significant secular perturbations to the orbit of a planet.
In particular, at high relative inclinations, a planet can undergo a
large-amplitude eccentricity oscillation. This so-called "Kozai mechanism" is
effective at a very long range, and its amplitude is purely dependent on the
relative orbital inclination. In this paper, we address the following simple
question: assuming that every host star with a detected giant planet also has a
(possibly unseen, e.g., substellar) distant companion, with reasonable
distributions of orbital parameters and masses, how well could secular
perturbations reproduce the observed eccentricity distribution of planets? Our
calculations show that the Kozai mechanism consistently produces an excess of
planets with very high (e >0.6) and very low (e < 0.1) eccentricities. The
paucity of near-circular orbits in the observed sample cannot be explained
solely by the Kozai mechanism, because, even with high enough inclinations, the
Kozai mechanism often fails to produce significant eccentricity perturbations
when there are other competing sources of orbital perturbations on secular
timescales, such as general relativity. On the other hand, the Kozai mechanism
can produce many highly eccentric orbits. Indeed the overproduction of high
eccentricities observed in our models could be combined with plausible
circularizing mechanisms (e.g., friction from residual gas) to create more
intermediate eccentricities (e=0.1-0.6).Comment: 24 pages, 6 figures, ApJ, in press, minor changes to reflect the
accepted versio
The intrinsic strangeness and charm of the nucleon using improved staggered fermions
We calculate the intrinsic strangeness of the nucleon, - ,
using the MILC library of improved staggered gauge configurations using the
Asqtad and HISQ actions. Additionally, we present a preliminary calculation of
the intrinsic charm of the nucleon using the HISQ action with dynamical charm.
The calculation is done with a method which incorporates features of both
commonly-used methods, the direct evaluation of the three-point function and
the application of the Feynman- Hellman theorem. We present an improvement on
this method that further reduces the statistical error, and check the result
from this hybrid method against the other two methods and find that they are
consistent. The values for and found here, together with
perturbative results for heavy quarks, show that dark matter scattering through
Higgs-like exchange receives roughly equal contributions from all heavy quark
flavors.Comment: 17 pages, 14 figure
End-to-End Learning of Video Super-Resolution with Motion Compensation
Learning approaches have shown great success in the task of super-resolving
an image given a low resolution input. Video super-resolution aims for
exploiting additionally the information from multiple images. Typically, the
images are related via optical flow and consecutive image warping. In this
paper, we provide an end-to-end video super-resolution network that, in
contrast to previous works, includes the estimation of optical flow in the
overall network architecture. We analyze the usage of optical flow for video
super-resolution and find that common off-the-shelf image warping does not
allow video super-resolution to benefit much from optical flow. We rather
propose an operation for motion compensation that performs warping from low to
high resolution directly. We show that with this network configuration, video
super-resolution can benefit from optical flow and we obtain state-of-the-art
results on the popular test sets. We also show that the processing of whole
images rather than independent patches is responsible for a large increase in
accuracy.Comment: Accepted to GCPR201
- …
